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The human blood system is maintained through the differentiation and massive
amplification of alimited number of long-lived haematopoietic stem cells (HSCs)".
Perturbations to this process underlie diverse diseases, but the clonal contributions
to human haematopoiesis and how this changes with age remainincompletely
understood. Although recent insights have emerged from barcoding studies in model
systems®, simultaneous detection of cell states and phylogenies from natural
barcodes in humans remains challenging. Here we introduce an improved, single-cell
lineage-tracing system based on deep detection of naturally occurring mitochondrial
DNA mutations with simultaneous readout of transcriptional states and chromatin
accessibility. We use this system to define the clonal architecture of HSCs and map the
physiological state and output of clones. We uncover functional heterogeneity in HSC
clones, whichis stable over months and manifests as both differences in total HSC
output and biases towards the production of different mature cell types. We also find
that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal
structure with multiple distinct clonal expansions. Our study thus provides a clonally
resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution,
showing an unappreciated functional diversity of human HSC clones and, more
broadly, paving the way for refined studies of clonal dynamics across a range of tissues
inhuman health and disease.

Haematopoietic stem cells (HSCs), which sustain the lifelong produc-
tion of blood and immune cells, have broad therapeutic applications
and serve as a paradigm for understanding stem cell biology". Recent
studies suggest that HSCs are functionally heterogeneous with diverse
clonal behaviours>**”. For a deeper understanding of the functional
diversity of HSCsitis critical to track clonal and subclonal relationships
in haematopoiesis to uncover HSC contributions and behaviours in
health, as well as in blood diseases, cancers and the setting of ageing
in which HSC functions are frequently perturbed®’.

Transplantation assays have demonstrated clonal heterogeneity
in HSCs but the relevance to homeostatic haematopoiesis remains
unclear'®", Inmodel organisms, genetic labelling of HSCs can be used to

investigate steady-state HSC behaviours™? " but variability in labelling
efficiencies and experimental methods has given rise to contrasting
views of how HSC clones contribute to haematopoiesis®> >, Although
genetic labelling of human HSCs is possible in rare settings of trans-
plantation during gene therapy trials, such exogenous labels cannot
be routinely used in humans®.

Somatically acquired mutations serve as naturally accumulating
barcodes that can be used for retrospective lineage tracing in human
samples?2*, Recent studies using whole-genome sequencing of colo-
nies comprising differentiated cells derived from single haematopoietic
progenitors have advanced our understanding of the clonal dynamics
underlying human haematopoiesis**?, However, the original cell state
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is not preserved with these approaches and such measurements are
critical toshowing how cell states impact the behaviour and contribu-
tions of HSCs and other cell types to haematopoiesis. Technologies that
cansimultaneously providerich cell-state readoutsin single cells and
yield detailed genealogical information from natural cellular barcodes
would, in principle, overcome this limitation. We and others previously
demonstrated the potential for mitochondrial DNA mutations to serve
as natural cellular barcodes in humans® 3, However, existing methods
candetect only alimited subset of mtDNA mutations, hampering the
ability to resolve fine-scale subclonal relationships and hierarchies.

Here weintroduce anew approach, single-cell Regulatory Multiomics
(transcriptomics and chromatinaccessibility) with Deep Mitochondrial
Mutation Profiling (ReDeeM), with approximately tenfold increase in
mutation detection rate. We applied ReDeeM to generate a clonally
resolved, single-cell transcriptomic and accessible chromatin atlas for
around 150,000 human haematopoietic cells from 12 donors, these
having being enriched to ensure appropriate coverage of rare haema-
topoietic stem and progenitor cell (HSPC) populations. Through this
approach we define the clonal architecture of human haematopoiesis
and also show the contributions of individual HSC clones to overall
and lineage-specific output. Finally we assess how these patterns vary
with human ageing.

Single-cell deep mtDNA mutation recovery

A number of features make mtDNA uniquely well suited as a natural
evolving barcode, including the compact nature of its genome (roughly
16.7 kb), high copy number (hundreds to thousands per cell) and
high rate of spontaneous mutations (estimated to be ten- to 100-fold
greater than nuclear DNA)**>*, Accordingly there have been a num-
ber of efforts to utilize mtDNA mutations as endogenous, evolving
cellular barcodes for lineage tracing and clonal inference that have
providedinsightsinto processes such as studies of blood cancers?3%*,
However, the resolution of the resulting phylogenetic analyses has
had limitations. The ability to detect rare mtDNA mutations found
in specific subclones is hampered by challenges in discrimination
of sequencing artefacts from true variants. To improve our ability to
callafuller set of mtDNA mutations we sought to use single-molecule
consensus correction, which can minimize the impact of sequencing
and PCR errors (Methods). We developed ReDeeM by modification
of the droplet-based, single-cell multiome of the 10X Genomics plat-
formusing whole cells and further optimized protocols that maximize
mtDNA coverage while also preserving single-cell RNA sequencing
(scRNA-seq) and single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) library quality (Fig.1a, Supplementary
Fig.1and Methods). We designed tiling mtDNA-specific probes for
hybridization-based capture (Supplementary Data 1 and Methods).
Three separate libraries (mtDNA, ATAC and RNA) were generated for
sequencing with matched cell barcodes for downstream integration
(Fig. 1a). The cell barcode, plus starting and ending positions of the
mtDNA fragments, serve as endogenous unique molecular identifiers
(eUMiIs) without the need for artificial barcodes (eUMlI collision rate of
approximately 3%; Methods and Extended Data Fig.1a).eUMI enables
single-molecule consensus error correction, resulting in markedly
improved sensitivity and accuracy in variant calling, in turn facilitat-
ing the detection of rare mtDNA mutations with low heteroplasmy
(Extended Data Fig. 2 and Supplementary Methods). We have devel-
oped anopen-source computational pipeline (redeemV and redeemR
packages) based on eUMIs for consensus mtDNA mutation calling with
single-cell multiomic profiling.

As aninitial benchmark of ReDeeM we profiled 7,104 human CD34"
HSPCs from a healthy young donor (age 31 years). Deep sequencing
ofthe targeted mtDNA library yielded substantially increased mtDNA
fragment coverage (on average. 51.7 mitochondrial genome copies per
cell versus 14.3 without enrichment) and an ideal eUMI group size for
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Fig.1|Single-cell deep mtDNA mutation detection with joint multiomics.
a, Schematic of ReDeeM workflow. GDN, 1% glyco-diosgenin (Methods).

b, Comparison of mtDNA copy number and UMIgroup size per cell before and
aftermtDNA enrichment. UMIgroup size is the number of raw reads ineach
UMl group. Q30, sequencing quality score of 30 or above (accuracy >99.9%).

¢, Comparison of the total number of confident mtDNA mutationsin 7,104 cells
before mtDNA enrichment (via the mgatk package?®®) and after (via UMI
consensus calling). d, Mutational signatures in each class of mononucleotide
andtrinucleotide change by heavy (H) and light (L) strands under the optimized
protocol. Mutational signatures are compared across unfiltered (top),

4,831 mtDNA mutations via UMI consensus calling (middle) and a previously
reported mtDNA mutational signature inbulk (bottom, adapted fromref. 35).
e, Distribution of the number of confident mtDNA mutations per cell before
(viamgatk) and after mtDNA enrichment (via UMI consensus calling).
f,Network connectedness analysis before (viamgatk, left) and after mtDNA
enrichment (viaUMI consensus calling, right). Each dot represents one cell and
eachline connects cells with shared mutations. Connectedness is defined as
the number of ‘neighbour’ cells sharing at least one mtDNA mutation withany
givencell.Lib., library.

consensus correction (on average, 4.8 raw reads for each eUMI copy
versus 1.6 without enrichment; Fig. 1b). Following stringent multistep
filtering we identified 4,831 high-confidence mtDNA mutations across
7,104 cells, which is more than tenfold higher than achieved by previ-
ously reported methods?** (Fig. 1c, Extended Data Fig. 3, Methods
and Supplementary Notes). We further examined these 4,831 mtDNA
mutations and validated that they were generally well supported by
multiplereadsin eacheUMI group, having both high consensus scores
and consistent overlap between paired-end strands (Extended Data
Fig.1c,e-g). Notably, the mutational signatures of these 4,831 mtDNA
mutations closely matched previously reported mtDNA mutational
spectra® (Fig. 1d). Consequently, each cell presented a far higher
number of mtDNA mutations (a median of nine versus one without
enrichment) shared by other cells, whichincreased cell-cell connect-
edness by one order of magnitude (Fig. 1e,f). This enhanced cell-cell
connectedness provides an unprecedented opportunity for fine-scale
subclonal and phylogenetic analyses. We benchmarked the data qual-
ity of the other two modalities, sScRNA-seq and scATAC-seq, from the
same cells. Both modalities showed excellent capture efficiency, with a



median of 5,084 transcripts and 15,590 ATAC fragments per cell. ATAC
insertions showed the expected size distributions and were highly
enriched at transcription start sites (Supplementary Fig.1c,e,f). Moreo-
ver, no significant signatures of selection were identified for most
mtDNA mutations, suggesting overall neutrality and enabling these
mutations to serve as an innocuous tracer (Extended Data Fig. 4 and
Supplementary Notes).

To test the accuracy of phylogenetic reconstructions gener-
ated by ReDeeM, we used a Kras;Trp53-drive lung adenocarcinoma
lineage-tracer mouse model® for detection of both engineered
CRISPR-based evolving barcodes in the nuclear genome and naturally
occurring mitochondrial somatic mutations by ReDeeM inthe same sin-
gle cells. Across two experimental batches a total of ten tumours were
sampled (six in batch 1and four in batch 2). The measure of cell-cell
relatedness and clonal groupings as determined by ReDeeM was sig-
nificantly supported by CRISPR-based methods at both the single-cell
level (median positive agreement of closeness, or agreement of close-
nessratio, is 0.78) and clonal cluster level (adjusted Randindex 0.2-0.7
across different clustering resolutions and samples; Extended Data
Fig.5, Supplementary Figs. 2 and 3 and Methods). Furthermore, rea-
nalysis of mitochondrial mutations from single-colony, whole-genome
sequencing-based lineage-tracing data* showed both clonal and sub-
clonal agreement, albeit with limited sensitivity, compared with that
achievable with enhanced mutation detectability by ReDeeM (Extended
DataFig. 6 and Supplementary Notes). These findings are in agreement
with arecent report showing agreement in regard to high-frequency
mtDNA mutations with whole-genome sequencing of colonies, but with
more noise in lower-frequency mtDNA mutations® (Supplementary
Notes). Taken together, these independent validations support the
ability of ReDeeM to robustly detect mtDNA mutations and enable
phylogeneticinferences.

Haematopoietic phylogenies and cell states

We next used ReDeeM to investigate human haematopoiesis. We col-
lected bone marrow aspirates from two healthy young donors aged 31
and 26 years (young-1and young-2, respectively) and isolated mononu-
clear cells (predominantly differentiated blood cells and precursors)
and CD34"HSPCsto ensure robust representation of both undifferenti-
ated and more differentiated cells. We profiled 11,009 haematopoietic
cells (5,415 bone marrow mononuclear cells (BMMCs) and 5,594 HSPCs)
and 15,101 haematopoietic cells (7,147 BMMCs and 7,954 HSPCs) in
young-1andyoung-2, respectively, for all three modalities (Fig.2a). We
confidently identified 3,896 and 4,803 mtDNA mutations in young-1
BMMCs and HSPCs, and 4,087 and 5,137 mtDNA mutations in young-2
BMMCs and HSPCs, respectively. Based on shared deep mtDNA muta-
tion profiles we reconstructed the phylogenetic trees of each donor’s
haematopoietic compartment using the neighbour-joining algorithm
(Fig. 2b, Supplementary Fig. 5aand Methods). Theresulting trees, which
were well supported by multiple mtDNA mutations (Supplementary
Fig.4a), were highly polyclonal, consistent with recent phylogenetic
analysis based on nuclear genome sequencing of haematopoietic colo-
nies from healthy donors™?,

Next we assessed cell state using the transcriptomic and epigenomic
information available for each leaf (single cell) in our phylogenetic
trees. We used weighted nearest-neighbour (WNN) metrics tointegrate
both modalities and identified 17 major haematopoietic cell types/
clusters (Fig. 2c and Supplementary Data 2). Pairing of scRNA-seq and
SCATAC-seq profiles fromindividual cells also enabled us to explore the
regulatory circuits in haematopoietic cell fate decisions. For instance,
on bifurcation paths between other myeloid lineages and the mega-
karyocyte/erythroid lineage we observed how master transcriptional
regulators SPI1 and GATA1 were turned on with specific regulatory
elements and subsequent promotion of differentiation trajectories,
characterized by increased accessibility of the transcription factor

motifof one or the other (Fig. 2d). We found that the GATA1 motif begins
to be activated earlier during HSC differentiation, even at low GATA1
expression, compared with SPI1, whichis consistent with previous stud-
ies**°, Interestingly, HSCs show significantly lower mtDNA mutation
burden than more committed progenitors and differentiated cells,
suggesting that there is acquisition of additional subclonal mtDNA
mutations occurring as cells rapidly divide during differentiation from
relatively quiescent HSCs* which, as discussed below, provides an
opportunity to explore phylogenetic relationships between different
celltypes (Fig.2e and Supplementary Fig. 5c). Taken together, our data
provide a clonally resolved, cell-state-aware atlas of human haemat-
opoiesis at single-cell resolution, allowing previously unachievable
inferences on the regulatory mechanisms underlying this complex
differentiation process.

Haematopoietic cell-type origins

The cell-state-aware phylogenetic trees of human haematopoiesis allow
ustoexplore the developmental origins and relationships among differ-
entblood and immune cell types, some of which are stillincompletely
understood. Mapping of multiomic, data-derived cell-type annotations
onto the phylogenetic tree showed that different haematopoietic cell
populations were widespread across the tree due to the polyclonal
origins. Interestingly, however, we also identified many fine-scale sub-
clonalstructures, or clades (thatis, the full set of cells that descend from
acommon ancestor and thus encompass a branch of a phylogenetic
tree), in which 1,650 and 2,079 clades are significantly enriched for
specificcell types (false discovery rate (FDR) < 0.2, fold change > 2) in
the two donors, respectively (Fig. 2f, Supplementary Figs. 4b and 5d
and Supplementary Data 3). Next we quantitatively assessed cell-type
origins using mtDNA mutation-based nearest-neighbour analysis. As
expected, the nearest clonal neighbours of most cell types (11 of 13)
are identical cell types. Notably, this analysis largely reconstructed
the hierarchical organization of blood cell-type origins previously
described and characterized extensively in conventional studies of
haematopoiesis' (Fig. 2g and Supplementary Fig. 5e). However, some
unexpected insights emerged from our analysis. For example, it has
been challenging to define clearly the progenitor populations that give
rise to conventional and plasmacytoid dendritic cells (cDCs and pDCs,
respectively)***®. Inour data, cDCs and pDCs show less restricted clonal
origins and bothappear to have amore myeloid-derived origin, which
echoesrecent lineage-tracing studies in mice**. Together, our method
resolves clonal and subclonal relationships for native steady-state
human haematopoiesis, also linking these relationships with rich read-
outs of cell state.

HSC cell-state heterogeneity

Coupling between more closely related clonesin the phylogenetic tree
and haematopoietic cell states can arise from one of two factors: (1)
mtDNA mutations emerging in HSC clones that show lineage biasand
(2) mtDNA mutations acquired later during differentiation. The former
possibility—or the extent to which HSCs have clonal and functional
heterogeneity—is of major clinical importance but remains unclear
inregard to native human haematopoiesis. The technical advances
we made provide a unique opportunity to address these distinct pos-
sibilities, specifically to dissect HSC heterogeneity. To enhance HSC
recovery wefirstenriched for HSCs by deep profiling of the phenotypic
CD34'CD45RA"CD90" population. We then filtered for cells that spe-
cifically express HSC marker genes HLF and CRHBP (Methods, Fig. 3a
and Extended Data Fig. 7a-e). We identified 5,393 and 3,292 HSCs in
young-1and young-2, respectively, which were independently vali-
dated by examination of the expression of other markers known to be
specifically enriched in HSCs, including MECOM, MLLT3 and RBPMS
(Fig. 3b and Methods). Importantly, to examine the stability of HSC
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Fig.2|Fine-scalelineage tracing with simultaneousstate profiling for
human haematopoiesis at steady state. a, Schematic ofthe ReDeeM
experiment for human haematopoietic cells. b, Phylogenetic tree for
haematopoietic cells of donor young-1, based on shared mtDNA mutations
using the neighbour-joining algorithm. The numbers of shareable mtDNA
mutations for each cell areindicated, withamedian of ten (cladograms are
used for tree visualization in this manuscript). ¢, Joint multiomics clustering
ofyoung-1(for the same cells fromb). Weighted nearest-neighbour uniform
manifold approximation and projection (wnnUMAP) showing combined ATAC
and RNA profile for 11,019 single cells. HSC, haematopoietic stem cell; MPP,
multipotent progenitor; MKP, megakaryocyte progenitor; CMP, common
myeloid progenitor; GMP, granulocyte-monocyte progenitor; MDP,
monocyte-dendritic cell progenitor; MEP, megakaryocytic-erythroid
progenitor; CLP, common lymphoid progenitor; LMPP, lympho-myeloid
primed progenitor; ProB, B cell progenitor; EryP, erythroid precursor; Mono,
monocyte; cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell;
NK, naturalKkiller cell. d, Analysis of chromatin accessibility (pseudo-bulk

molecular and behavioural heterogeneity—and thus establish a defini-
tivelink between our phylogenetic trees and HSC clonal behaviours—we
sampled HSCstwice over the course of 4 months from the same donor
(young-1) (Fig. 3a). We further performed unsupervised clustering of
HSCsbased on WNN space using combined transcriptomic and acces-
sible chromatin states and identified 14 subpopulations in this donor
(Fig. 3c). Notably, all subpopulations were consistently identified in
both ATAC and RNA space and were reproducibly detected at both
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ATAC, left), mRNA expression (middle) and DNA-binding activity (right) of
SPI1and GATAltranscription factors (TFs) in HSCs differentiating towards
myeloid versus mega-erythroid trajectories. Deviation of transcription factor
DNA-binding motif frequency was computed using ChromVar based on the
JASPAR2020 human transcription factor database. e, Measurement of mtDNA
mutation burdens across different cell types; n =11,019 cells. Boxplot shows
datafromthe 25th-75th percentile and whiskers extending to the minimum
and maximumwithin1.5x interquartile range (IQR). P values were derived from
two-sided Wilcoxon rank-sum test. f, Integrative analysis between phylogenetic
tree-and multiomics-based cell types. Examples of cell-type-restricted local
clades are highlighted (clades i-viii). Enrichment P values were computed by
one-sided binomial test followed by g-value correction. g, Analysis of cell-type
origins based onlineage-informative mtDNA mutations (11,009 cells versus
631 variants). Colourintensity indicates the proportion of each target cell type
(x axis) within the mtDNA mutation-based k-nearest neighbourhood (KNN) of
the queried cell type (y axis).

time points (Fig. 3c and Extended Data Fig. 7f). Across HSC subpopu-
lations we identified differentially expressed genes and differential
transcription factor accessibility (Extended Data Fig. 7g and Supple-
mentary Fig. 6a). For instance, although overall highly expressed in
allHSCs, some key HSC genes, including MECOM, FLT3, CDK6,JUN and
FOS, are differentially expressed across subpopulations (Fig. 3d and
Supplementary Fig. 6b). These genes are known to be important in
regard to HSC functions, including HSC maintenance, self-renewal,
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were processed by ReDeeM. HSCs were enriched by fluorescent activated
cellsorting (FACS) and further defined by single-cell gene expression (expr.)
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differentiation and inflammatory responses, and dysregulation of these
factors can contribute to leukaemogenesis**. We also found several
differential pathways across subpopulations, with evidence at both
thelevel of gene expression and transcription factor activity changes,
such as BMP-SMAD signalling alterations and changes in AP1 signal-
ling (Extended Data Fig. 7g and Supplementary Fig. 6a), reminiscent
of previous studies in mice suggesting key roles for these pathways
in HSC heterogeneity*®*'. Notably, we found that the major HSC sub-
populations are reproducible in young-2 but we also identified rarer
subpopulations found specifically in each individual (Extended Data
Fig.7h-nand Supplementary Fig. 6¢). Overall our data provide amul-
tiomic resource that allows usto decipher human HSC heterogeneity.

HSC clonal structure

Next, based on shared mtDNA mutations across 5,393 molecularly
defined HSCs, we reconstructed a phylogenetic tree showing clonal
relationships across HSCs. To study HSC clonal features, we defined
HSC clonal groups by dividing the tree structure into small clades,
which are groups of the most closely related HSC clones (Fig. 3e and

test.c, Subpopulations of HSCs based on single-cell RNA and ATAC profiling
alone, and on combined WNN space. d, Examples of differentially expressed
genesacross HSC subpopulations. e, Phylogenetic tree of HSCs sampled from
two time points using shared mtDNA mutations (donor young-1). f, Overlap
analysis between HSC clonal groups and HSC state subpopulations using
hypergeometric tests. Colour intensity indicates combined enrichment FDR
(Supplementary Data 4). g, Comparison of HSC clone-in-state enrichment
(enrich.) (asinf) across the two time points; enrichment fold change is compared.
Colourintensity indicates combined enrichment FDR.

Methods). For clarity the terms ‘HSC clones’ and ‘clonal groups’ used
hereafter refer to a group of HSCs that share origins during develop-
ment, rather thanreferring toindividual HSCs. The resulting tree shows
abalanced polyclonal architecture of HSCs. In total we defined 78 HSC
clonal groups out of 5,393 profiled single HSCs. Notably, the majority
of HSC clonal groups can be reobserved in the sequential sampling of
the same donor, suggesting that they are representative of HSCs that
contribute to haematopoiesis over at least several months in vivo, a
timescale over which the majority of non-HSC cell types are believed
to have turned over at least once.

It is unclear whether different HSCs have heritable cell states or
whether the variationin HSC states represents stochastic, short-lived
fluctuations. Our datalink clonal identity and cell states from the same
cells,and thus we could directly measure the distributions of the 78 HSC
clonal groups across the 14 multiomic, cell-state-based HSC subpopu-
lations. We found that 48 (around two-thirds) of HSC clonal groups
are stochastically distributed across different HSC states whereas
30 (around one-third) show significant enrichmentin one or a small
number of specific state subpopulations (Fig. 3f). Interestingly, we
found that HSC clone-to-subpopulation enrichment was significantly
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Fig.4|HSC clonal output activity and lineage biases. a, Schematic of the
strategy that assigns progeny cells to HSC clonal groups using network
propagation viamtDNA mutation-based cellular networks. b, Summary of HSC
clonal output activity (number of progeny cells from each HSC clone) across
two sampling time points in young-1. Progeny numbers are normalized to HSC
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each HSC clone, atboth time points, inyoung-1and young-2, ranked from
highest to lowest contribution to total progeny population. Dashed line
indicates the expectation of equal contribution fromall clones. e, ForeachHSC

correlated in the same donor across the two time points, which span
4 months (Fig. 3g), suggesting that HSC biases can be sustained over
a period of at least months in humans. We also examined the clonal
structure for HSCs in young-2. Consistent with the analysis of young-1,
we also observed a polyclonal structure with both stochastic HSC vari-
ation and other clones, demonstrating cell-state preference at propor-
tions similar to those observed in young-1 (Extended Data Fig. 70,p).
In sum, we surveyed HSC clones with their molecular states, which
suggestsa partially heritable and relatively stable state preference for
approximately one-third of HSC clones.

HSC clonal output and cell-type biases

Traditionally, the functional output of HSCs could be measured onlyin
transplantation settings or by barcoding in model systems. Given our
advances in detection of deep mtDNA mutations as natural cellular
barcodes, we reasoned that tracking of human HSC output in native
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HSC clonal output (z-score)
clonalgroup the percentages of progeny that differentiate into one of the four
main lineages are shown: megakaryocyte (MK), lymphoid (Lym), erythroid
(Ery) and myeloid (Mye) cells. Clones with consistent enrichment at both time
points aregrouped as biased clones. The significance of clonal lineage biases is
indicated (FDR*0.05-0.20, **0.01-0.05, ***<0.01; Supplementary Data 4 and
Methods). Top, fold changes of clonal lineage biases for each clone are
indicated for both time points. f, Correlation between HSC clonal output
activity and clonal lineage biases. Error bands are 95% confidence level interval
for predictions from the linear model. Pvalues derived from Wald test.

haematopoiesis was now possible. To avoid confounding from drop-
out or detection failure of specific mtDNA mutations, we developed
Single-Cell Analysis of Variant Enrichment through Network Propaga-
tion of Genomics for Lineage-tracing data (SCAVENGE-L), acomputa-
tional method based on anetwork propagation strategy that maximally
utilizes informative mtDNA mutations to identify the progeny of dis-
tinct HSC clones (Fig. 4a and Methods). With SCAVENGE-L analysis
we found that most cells can be mapped to one distinct HSC clonal
group withanexclusively high probability of assignment (Supplemen-
tary Fig. 7a). To further benchmark the accuracy of this approach we
compared network propagation-based assignment with the originally
identified HSC clonal groups (ground truth). As expected, the accuracy
oftheassignmentincreases for those cells with higher maximum assign-
ment probability. We then filtered cells with a maximum probability
of 0.7, by which more than 80% of HSCs could be assigned to the cor-
rect HSC clonal group (Supplementary Fig. 7b and Methods). Collec-
tively, the benchmarking analyses at both time points across the two



donors demonstrate the robustness and consistency of SCAVENGE-L
(Supplementary Fig. 7b-e).

The extent to which HSC output variation and lineage biases exist
is controversial, and most previous studies have relied on labelling in
mouse models and/or transplantation assays®*>" ", Indonoryoung-1,
22,349 (or 59%) committed and differentiated cells were confidently
assigned to HSC clonal groups with the highest assignment probability
greater than 0.7 (via SCAVENGE-L). The output of a specific clone to
differentiated blood and immune cells can then be directly measured
and compared across different HSC clonal groups following normaliza-
tion for clonessize (Fig.4b and Methods). We found that all HSC clonal
groups are actively producing progeny but there is some variation
in the extent of output between clones, with a 4.9-fold difference in
output between the top and bottom clonal deciles (Fig. 4b). Inter-
estingly, this variable output activity shows high consistency at the
clonallevel between the two time points spanning 4 months (Pearson’s
r=0.69) (Fig. 4b,c). As expected, in young-2 the HSC clonal output
activity also shows variability with a similar pattern (4.5-fold change
between top and bottom clonal deciles; Supplementary Fig. 7f). We
further quantified overallHSC clonal contributions in haematopoiesis
and found that the top 50% of HSC clones based on output gave rise
to approximately 60% of mature haematopoietic cells at both time
pointsand across both donors (Fig.4d). These results suggest that most
HSC clonesactively contribute to human steady-state haematopoiesis
but that some sustained variability over many months is observed
between HSCs.

The degree to which HSCs show lineage bias in native human haema-
topoiesis is unclear. Our data allow us to investigate the cell states of
progeny assigned to different HSC clonal groups. For clarity, the terms
‘lineage’ or ‘lineage biases’ used in this context refer to the differentia-
tion trajectory based on cell states. We defined four main lineages by
grouping cell states based on the multiomic data: myeloid (monocytes,
GMP, MDP, ¢DC), lymphoid (CD4, CD8, natural killer (NK), B, ProB,
CLP), erythroid (MEP, EryP) and megakaryocyte (MK) (Fig. 2c). We
then computed the lineage contribution for each HSC clonal group.
Compared with the expected lineage distribution using all cells, we
identified 47 (60%) HSC clonal groups with consistent lineage prefer-
enceacross the two time points, with 31 (40%) HSC clones showing no
detectablelineage bias (Fig. 4e, Supplementary Data4 and Methods).
Notably, the lineage preference of biased clones shows only amoderate
effect size (withamedian1.55-fold change) but is highly reproducible
across the two time points spanning several months (Pearson’s r= 0.59).
Consistently we also observed 69% of lineage-biased HSC clones in
young-2 (Supplementary Fig. 7g). When we explored the relationships
between clonal output and lineage preference we found the lymphoid
lineage bias negatively correlated with HSC clonal output; erythroid
and myeloid lineages were positively correlated with HSC clonal out-
put, and MK lineages showed no significant difference (Fig. 4f). This
is consistent across both donors and with findings using orthogonal
approaches from previous reports (Supplementary Fig. 7h)". Finally
we developed a method for ‘clonal behavioural trajectory analysis’
to survey the potential molecular drivers of distinct clonal functions
in terms of output activity and differentiation biases (Extended Data
Fig.8a). Weidentified multiple accessible regions, but not gene expres-
sionchanges, that are significantly associated with one or more behav-
iouraltrajectories (2,931 differential peaks, FDR < 0.01; Extended Data
Fig. 8b and Supplementary Data 5). We investigated nearby genes for
peak groups associated with different biases by gene set enrichment
and motif analyses (Extended Data Fig. 8c-e). Interestingly, the func-
tions of these nearby genes are reminiscent of the respective output
and lineage biases examined, which suggests that chromatin acces-
sibility variation might foreshadow fate decisions in HSCs, echoing
previous reports'>*%. Taken together, these results suggest that HSCs
have moderate, butrelatively stable, lineage biases across time in native
human haematopoiesis.

Oligoclonal expansions in ageing

Recent studies have suggested that thereisboth attrition of HSCs with
age and expansion of specific clones that harbour disease driver muta-
tions, which can increase the risk for acquiring leukaemia and other
morbidities, aphenomenon termed clonal haematopoiesis®. However,
the detection of such clonal expansions has mostly relied on monitoring
of specific driver mutations with bulk-sequencing methods and so the
extent of clonal complexity that would be observed at single-cell resolu-
tion remains unstudied. To explore this question we used ReDeeM to
profile 9,519 and 14,715 haematopoietic cells from two older donors,
aged 76 and 78 years, which we termed aged-1and aged-2, respectively.
We detected asignificantly increased mtDNA mutation burdenin these
aged donorsacrossallidentified cell types, consistent with reports on
somatic mutationsin nuclear genomes®* (Fig. 5aand Methods). Based
onshared mtDNA mutations, wereconstructed the phylogenetic tree
for each aged donor. Remarkably, the resulting trees exhibit markedly
more oligoclonal structure compared with that of the young donors
(Fig. 5b,c). We identified 48 and 84 clonal groups for aged-1and aged-
2, respectively, by reducing the phylogenetic tree structure using the
same methods (Methods). The aged donors had several large clones
that dominated the haematopoietic architecture, with lower clonal
diversity (Shannon diversity index) compared with the young donors,
which was further confirmed by analysis of five additional young and
three additional aged donorsinahashed and pooled manner (Fig.5d,e,
Extended Data Figs. 9c and 10d-g and Methods). For examination of
subclonal dynamics we adapted a statistical test to quantify clade
size relative to that expected if HSCs were evolving under a neutral
evolution model (Methods). We identified multiple expanded clades
in the aged donors (those of a size greater than 500 cells under posi-
tive selection with P < 0.01), which were almost completely absent in
the young donors (Extended Data Fig. 9a,b). The proportions of cells
inthe expanded clades were 34.4% in aged-1and 46.3% in aged-2 but
only 3.4%inyoung-land 8.7% in young-2. Next we inferred the ‘fitness
score’, which is defined as the growth advantage compared with the
remainder of the population, for every single cell in the aged donors
(Methods). These analyses show variation in single-cell fitness within
the same donor. As expected, cells in expanded clades showed high
fitness scores (Fig. 5f and Extended Data Fig. 9d).

Haematopoietic mosaic loss of the Y chromosome (mLOY) is fre-
quently observed with ageingin men and is associated with anumber
of morbidities. However, the causes and consequences of mLOY are
unclear®. Here, based on single-cell ATAC fragments on chromosome Y,
we developed quantitative metrics for estimation of LOY insingle cells
(Methods). Weidentified 119 and 11 cells with LOY inaged-1and aged-2,
respectively, but none in young male donors (Extended Data Fig. 9i,j).
For aged-1we mapped the identity of cells with or without LOY on the
phylogenetic tree, finding that LOY cells appear in multiple branches
butare most significantly enriched in expanded clade A, which shows
the highest fitness scores. Interestingly we also identified other expan-
sions, such as expanded clade B without LOY enrichment but whichis
probably caused by a different driver (Fig. 5f). These results suggest
that, in aged-1, LOY events occur with low frequency but may occur
independently multiple times and are enriched in cells with higher
fitness scores, consistent with previous reports®. Animportant caveat
tothisanalysisisthat the detection of LOY using single-cell ATAC frag-
mentsis limited by the scarcity of accessible reads on chromosome Y.

Finally weinvestigated cell-type composition within each expanded
clade, which is enabled by the joint multiomic readouts available
through our method. We found that different expanded clades showed
skewed cell-type distributionin both aged donors. This finding is fur-
ther supported by analysis of the additional, aged, donors (Fig. 5g and
Extended Data Figs. 9e and 10h-j). Interestingly, the expanded clade A
in aged-1that showed enrichment for LOY is biased towards the lym-
phoid lineage, which echoes our recent analysis using bulk population
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data showing a strong correlation between LOY and individual lym-
phocyte counts®. In addition, in one of the additional aged donors
(aged-5) withaknown clonal haematopoiesis mutation detected in bulk
(ASXL1-Q373X), theidentified expansions were depleted for erythroid
cells, whichis reminiscent of the phenotype observed in Asxll mutant
mouse models (Extended Data Fig. 10j)*>*¢. Further incorporation of
single-cell genotyping with ReDeeM in the future will be valuable in
regard to definitive determination of clones with driver mutations
and definition of the underlying molecular mechanisms for the
observed expansions®*, Collectively these results reshape our view
of aged haematopoiesis and, rather than detecting a single clonal
expansion asis typically thought to occur with age-related clonal hae-
matopoiesis, we detected a more complex and pervasive oligoclonal
architecture.

Discussion

The study of human haematopoiesis has served as a paradigm for
our understanding of stem cell biology. Despite decades of effort,
central questions on human haematopoiesis remain unresolved. For
example, the extent to which the models ‘clonal succession’ (only a
few stem cells contribute) versus ‘clonal stability’ (many stem cells
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contribute simultaneously)**®° best describe native haematopoiesis
isunclear, asis the extent to which unperturbed populations of HSCs
have restricted differentiation potency or lineage biases®®.. Various
transplantation-based assays, as well as cell labelling-based methods,
have provided important insights but with respective limitations,
especially for the exploration of these problems in a native human
ConteXt3'l4'62'63.

Here we present a high-resolution, engineering-free, massively par-
allel, single-cell lineage-tracing approach with direct application to
human samples. Using this approach we provide a clonally resolved
and cell-state-aware single-cell atlas for native human haematopoiesis
and use this atlas to explore the clonal architecture and heterogene-
ous behaviour of human HSCs at steady state in vivo. We show, that in
youngindividuals, the majority of HSC clones are actively contributing
to haematopoiesis at steady state but with some differences (around
fivefold) in clone-specific output activity, and that these differences
are stably maintained over a timescale of at least several months. We
alsodemonstrate that there are inherent clone-specific lineage biases
that, like the clonal differences in output, are confined in magnitude but
sustained across time. Finally we identify HSC subpopulations using
joint transcriptomic and epigenomic states and find that a notable
subset of HSC clonal groups are enriched in certain HSC subpopulations



as defined by gene expression and epigenomic states. Interestingly, we
found that the HSC clone-specific cell-state preference in the human
native contextisalso aninherent feature thatisrelatively stable, which
echoes some findings using labelling-based methods in mice>**. Of
note, we describe behavioural and cell-state biases for HSC clonal
groups, which share common ancestors, rather than for individual
HSCs. Due to the limited sampling of cells in bone marrow aspirates,
the HSCs in a clonal group may not be the most immediate siblings.
Therefore, furtherimproved sampling by increasing cell numbers, loca-
tions and time points will provide animproved view of the phylogenetic
relationships and is crucial to identifying mechanisms underlying the
observed cell-state and behavioural biases for more recently derived
clonal groups, and even single human HSCs.

Thus, together with previous studies, a picture of normal haemat-
opoiesis emerges from our work in which, in youngindividuals, there
isarich and balanced polyclonal architecture for HSC contributions
to haematopoiesis, with each subclone having distinct but confined
preferences in cell-state, output and lineage biases. By contrast, in
aged individuals there is a marked breakdown in this clonal diversity.
Clonal expansion, or the alteration of clonal diversity, is involved in
various cancers and premalignant conditions. However, the causes and
consequences of diminished clonal diversity are largely unknown and
difficult to study in humans. Our results suggest that clonal expansions
may arise with multiple origins and different lineage biases. Our ability
to capture and characterize clonal expansions at single-cell resolution
in ageing should enable the in-depth exploration of the molecular
nature of these expanding clones.

More broadly, somatic mutations have increasingly been found to
contribute to a variety of disease processes beyond haematopoiesis
and cancer®, Compared with single-colony or single-cell whole-genome
sequencing, ReDeeM markedly enhances mtDNA mutation detectabil-
ity through consensus error correction and also provides comprehen-
sive cell-state information. It offers high scalability and significantly
reduces the cost per cell, facilitating extensive exploration of sub-
clonal changesin human health and disease. Future advances aiming to
improve phylogenetic inference with ReDeeM that consider the unique
dynamics of mitochondrial genomes and other biological features
will enable improved lineage tree reconstruction, paving the way for a
deeper understanding of how clonal mosaicism can contribute to a
diverse range of human diseases.
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Methods

Bone marrow donors

Freshbone marrow samples from healthy young donors were aspirated,
withinformed consent, under asample-banking protocol approved by
the Institutional Review Board of Boston Children’s Hospital. Sternal
bone marrow from aged donors was collected following sternotomy
for cardiac surgery, with informed consent, under a sample-banking
protocol approved by the Institutional Review Board of Mass General
Brigham. Individual donor information is shown in Supplementary
Table1.

Primary BMMC extraction

Bone marrow was collected from healthy young and aged donors.
Bone marrow aspirates were diluted with an equal volume of wash
buffer (PBS, 2% fetal bovine serum (FBS), 1 mM EDTA). Ficoll medium
was added to SepMate tubes (STEMCELL Technologies, catalogue no.
85460) and the diluted bone marrow sample was then layered on top
followed by centrifugation at1,200g for 20 min at room temperature.
The top layer, containing the mononuclear cells, was transferred to a
new tube which was then filled up by wash buffer. Mononuclear cells
were centrifuged at 300g for 8 min. The supernatant was discarded and
cells washed twice and resuspended in either wash buffer for further
enrichment or freezing buffer (10% DMSO in FBS).

Enrichment for HSPCs

Starting with BMMCs isolated from the previous step, we enriched
CD34" cells with the EasySep Human Cord Blood CD34 Positive Selec-
tion Kit Il (STEMCELL Technologies, catalogue no. 17896). Briefly,
EasySep Human CD34 Positive Selection Cocktail (STEMCELL Tech-
nologies, catalogue no.18096 C) was added to the BMMC suspension
up to 100 pl mI™ with incubation at room temperature for 10 min.
EasySep Dextran RapidSpheres (STEMCELL Technologies, catalogue
no.50100) was vortexed and added to each sample up to 50 pl ml™and
the mix incubated for 3 min at room temperature. Next, wash buffer
(7 ml) wasadded to the tube and cells were washed four times in The Big
Easy EasySep Magnet (STEMCELL Technologies, catalogue no.18001).
Finally, cells were resuspended in wash buffer and centrifuged at 300g
for 10 min. The CD34" cell pellet was then resuspended in freezing
buffer (10% DMSO in FBS).

For furtherenrichment of HSCs, analiquot ofenriched CD34" cellswas
stained by one of the following antibody panels: (1) CD34 PerCP-Cy5.5
(BD Biosciences catalogue no.347222), CD45RA Alexa Fluor 488 (BioLe-
gend catalogue no.304114) and CD90 PE-Cy7 (BD Biosciences catalogue
no.561558) with DAPI (Thermo Fisher Scientific catalogue no. D1306) as
viability dye; or (2) CD34 BV421 (BD Biosciences catalogue no.562577),
CD45RA-APC-H7 (BD Biosciences catalogue no. 560674) and CD90
PE-Cy7 (BD Biosciences catalogue no. 561558) with 7-AAD as viability
dye (BD Biosciences catalogue no.559925). This was followed by 3 pl of
eachantibody being used for staining of the cell resuspensionin100 pl.
Cells were further sorted with BD FACSAria for CD34°CD45RA"CD90"
to enrich HSCs. The gating strategy is shown in Supplementary
Information.

BMMCs, as well as enriched CD34" and CD34'CD45RA"CD90" cells,
were cryopreserved in freezing buffer (10% DMSO in FBS). Following
thawing, cells were immediately processed for experimental use as
soon as possible with no culturing.

Principle of ReDeeM

Here we developed ReDeeM, which is a modified, massive parallel
single-cell protocol that simultaneously profiles multiomics with
deep mtDNA sequencing based on the 10X Genomics platform. The
key features of this system are the following: (1) an optimized proto-
col for maximization of mtDNA yield; (2) specific enrichment of the
mtDNA library that can be subject to very high sequencing coverage;

(3) unique molecularidentifiers that label individual mtDNA molecules,
allowing for the use of error correction to enable high-precision calling
of mtDNA mutations®7°; (4) a robust inference algorithm that uses
deeper and improved mtDNA mutation detection for phylogenetic
reconstructions; and (5) concomitant scRNA-seq and scATAC-seq
that link phylogenetic relationships with cell-state readout. With
ReDeeM threeseparatelibraries are generated, including an enriched
mtDNA library for deep sequencing and mutation profiling, a RNA
library for gene expression and an ATAC library for chromatin acces-
sibility profiling, all of which are linked via matchable single-cell
barcodes,

Following the principle of our previous work??’, we first modified
the droplet-based 10X Genomics multiomics protocol (catalogue no.
100283) by processing the whole cell, rather than nuclei, with fixation
and mild permeabilization for maximal retention of mtDNA. Next we
designed mtDNA-specific probe sets to enrich mitochondrial fragments
using DNA hybridization. RNA and ATAC library preparation followed
the standard 10X Genomics protocol, with some modifications.

Further method details are described in Supplementary Methods
and the ReDeeM protocol. ReDeeM is further computationally sup-
ported by the consensus variant-calling pipeline redeemV, as well as
theR package redeemR for downstream mutation quality control and
single-cell phylogenetic and integrative analysis.

ReDeeM protocol
The detailed protocol is available as a Supplementary Protocol.

CRISPRlineage-tracing experiment with ReDeeM

Mouse experiments were approved by the Massachusetts Institute of
Technology Institutional Animal Care and Use Committee (Institu-
tional Animal Welfare Assurance, no. A-3125-01). A male mouse ESC
line harbouring the conditional alleles KrasLSL-G12D/+ and Trp53fl/fl
was engineered with lineage-tracer cassettes. The detailed engineering
process, including vector information, tumour harvest and single-cell
suspension, was prepared as described in ref. 36. Two independent
mouse ESC lines were used for batch 1and batch 2 experiments.

The single cells of batch 1 (six tumours) and batch 2 (four tumours)
were labelled with Cell Hash and profiled using ReDeeM except
for the following modification: additional target site libraries
were needed. Amplified cDNA libraries were further amplified
with target site-specific primers containing lllumina-compatible
adaptors and sample indices (0DYT023-0DYTO038, forward: 5’CAA-
GCAGAAGACGGCATACGAGATNNNNNNNNGTCTCGTGGGCTCGGAG
ATGTGTATAAGAGACAGAATCCAGCTAGCTGTGCAGC; reverse: 5-AAT
GATACGGCGACCACCGAGATCTACACNNNNNNNNTCTTTCCCTACAC
GACGCTCTTCCGATCT; N denotes sample indices) using Kapa HiFi
ReadyMix (Roche), as previously described*®.

For sequencing of scRNA, scATAC and mtDNA libraries the strategy
described for ReDeeM was used except that four sets of mouse-specific
probes were designed to enrich mitochondrial fragments (Supple-
mentary Methods and Supplementary Data 1). For sequencing of
target site libraries, 15,000 total reads per cell were expected and the
following read lengths were used: Readl, 26 cycles; i7, eight cycles;
Read2,290 cycles).

The integration analysis of CRISPR- and ReDeeM-based lineage
tracing is detailed in Supplementary Methods.

mtDNA mutation burden

We estimated mtDNA mutation burden using a quantitative method.
The number of detected mutations per cellis afunction of both biologi-
calmutationburdenand technical detectability, whichis influenced by
mtDNA capture rate. We computed mtDNA mutation burden by both
normalization against mtDNA coverage (number of mtDNA copies
per position per cell) and eUMI filtering rate, which was used to cor-
recttechnical batch effects across different experiments arising from
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variation in sequencing depth, sequencing quality and so on. Given a
single cell iin samplej, the mutation burden is computed as

Mutation burden
_ no.of mtDNA mutations|cell i
(eUMI filtering rate|sample j) x (mtDNA coverage|cell i) °

Inferring lineage distance and phylogenetic tree using mtDNA
mutations

Following all the filtering steps with R package ReDeeM-R (https://
github.com/sankaranlab/redeemR), including variant and cellfiltering
(Extended DataFig. 1i; all parametersincluded can be adjusted to con-
trol stringency), we generated sparse matrix Cto contain all the variant
allele count (cell versus mtDNA mutation). The allele count matrix was
further divided by the matrix of mtDNA copy number per position per
cell, whichgenerated heteroplasmy matrix Hfor visualization. Because
mutation count datawere sparse, the quantitative heteroplasmy level
was susceptible to variation in mtDNA coverage. To minimize biases
of coverage and heteroplasmy dynamics in the downstream analysis
we performed binarization of matrix Cinto matrix C,;,,. We found that
binarizationis morereliable and provides sufficient resolution, given
the number of variants identified per single cell. Nonetheless, both
quantitative matrix Cand binarized matrix G, are provided for down-
stream analysis in ReDeeM-R.

Based on matrix Cy,;,,we computed the cell-to-cell weighted Jaccard
distance. The prior of the mtDNA mutation frequency across multiple
donors was used to weight Jaccard distance to account for potential
homoplasy. Intuitively, weighted Jaccard distance measures the level
to which any two cells share mutations—that is, following proper
normalization, the more mtDNA mutations are shared the closer
the relationship of the two cells. We first defined a prior probability
for each mutation, which prioritizes mutations with lower mutation
rate across donors (thatis, less likely to be the same mutation occur-
ring independently). For cells x and y the weighted Jaccard distance
(Dy jaccara) is defined as

Prior; = (1 - average mutation rate across donors)

D —1- Zie[x,-:l&y,»:l] prior,
w_Jaccard 2'_ priori
Next, theweightedJaccard distance was fedinto the neighbour-joining
algorithm for phylogenetic tree reconstruction and visualization using
the packages ape and ggtree (cladograms are used for visualization
throughout this manuscript, to focus on the topology of the tree
structure).

Lineage origins of haematopoietic cell types

Initially we selected ‘lineage-informative’ mtDNA mutations by mod-
elling mutation distributions across all cell types. We removed muta-
tionsrandomly distributed, which probably arose in certain unbiased
stem cell clones and thus were less informative in regard to studying
cell-type subclonal origins. Specifically we first grouped all cell types
into four major differentiationtrajectories: myeloid (GMP, MDP, mono-
cyte), lymphoid (CLP, ProB, CD4, CDS8, B, NK), MKs (MK progenitor)
and erythroid (MEP, erythroid progenitor). The frequency of each
mtDNA mutation was tested between any two differentiation trajecto-
riesusing abinomial test. When P values of all comparisons were greater
than 0.05, mtDNA mutation was defined as randomly distributed. We
filtered out all randomly distributed mutations and generated a list
of lineage-informative mtDNA mutations (631 lineage-informative
mutations are used in Fig. 2g). Using these mutations we generated
matrix C,;,,and computed weighted Jaccard distance. We then generated
KNNgraph Gthat describes cell-to-cell lineage relationships based on

shared mutations. We then integrated cell-type annotations from the
multiomics analysis with graph G. For any given cell (query cell), the
proportion ofeach cell type (target cell types) within KNN on graph G
was computed. Target cell-type proportions for each query cell type
were then aggregated and scaled, as shown in Fig. 2g and Supplemen-
tary Fig. 5. Finally, query cell types were grouped by hierarchical clus-
tering based on target cell-type proportions within neighbourhoods.

HSC subpopulations and clone-to-state preferences

For specific study of HSCs we experimentally enriched the
CD34'CD45RACD90" population as described previously. We further
refined HSC populations using asemi-unsupervised method. First we
performed community detection-based clustering for all cellson WNN
using Seurat”. Second, we averaged HLF gene expression level for each
clusterand defined HLF" and HLF°" clusters. Third, we simultaneously
examined HLFand CRHBP gene expression levels for every single cell*”2,
We required that any HSC cell highly expresses both HLF and CRHBP
and is also grouped within HLF" clusters. The defined HSCs were fur-
ther examined using additional HSC signatures, including MECOM,
HOPX, AVP, MLLT3, RBPMS and other*7>™, To improve the robustness
of weakly expressed genes, expression data were enhanced using the
Rmagic package for visualization™.

For the refined HSCs above we performed secondary clustering on
WNN to define subpopulations. These were identified using Seurat at
aresolution of 0.6. Subpopulations were visualized on RNA-, ATAC-
and WNN-based UMAP. Differentially expressed genes and accessi-
ble chromatins were identified using FindMarker function by Seurat.
The DNA-binding motif's of differential peaks were analysed by ‘find
individual motif occurrences’ scanning withthe HOCOMOCOV11_full_
HUMAN_mono human transfection factor motif database, followed by a
binomial test across HSC subpopulation-specific open chromatin peaks
(related to Supplementary Fig. 6). Visualization of differential motifs
at the single-cell level was performed using chromVar’7’,

To best capture the principal HSC clonal structures we performed
normalization and dimension reduction using term frequency-inverse
document frequency and singular value decomposition on a bina-
rized mtDNA variant-by-cell matrix. Top 30 latent semantic indexing
was used to measure Euclidean distance, which was further passed
on to the neighbour-joining algorithm to build the phylogenetic
tree. Next, mtDNA mutations were assigned to tree branches using
amaximum-likelihood method as described previously, which has
beenincorporated in redeemR (Add_AssignVariant function)?. We
defined HSC clonal group as the minimum clade unit containing at
least 50 single cells, with based edges having at least one confidently
assigned mutation (‘edge’ refers to aline connecting two nodesin the
phylogenetictree; the Add_tree_cut function from ReDeeM-R was used).

Next we examined the distribution of each HSC clonal group across
allHSC subpopulations as defined by RNA- and ATAC-based cell state.
Compared with the background, the fold enrichment of agiven clonal
groupineach cell-state subpopulation was computed and the P value
estimated by hypergeometric test. Fold enrichment and P values
were compared across HSCs from two sampling time points. P values
from two time points were combined using Fisher’'s method, and FDR
was computed using the qvalue R package. The cutoff used to define
HSC clone-to-cell-state preference is as follows: combined P < 0.01
and FDR < 0.05 and log,fold change(time point 1) > 0.25 and log,fold
change(time point 2) > 0.25. Full statistics are shownin Supplementary
Data4.

HSC progeny clonal assignment using network propagation

Combining the sampling of HSCs with committed and differentiated
progeniesin the same donor, we aimed to use the similarity of mtDNA
mutation profiles to assign progeniesinto one of the HSC clonal groups.
Briefly we first built an inclusive clonal network using shared mtDNA
mutations for all cells from the same donor. Next, HSC cells from each
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HSC clonal group served as seeds to propagate clonal information
through the clonal network until a stationary state was reached. Each
clonal group was used for network propagation iteratively. Following
network propagation, the information carried by each cell represents
the probability of the assignment for the given HSC clonal group, and
normalized probabilities are compared across all clonal groups to
determine the final assignment.

Because the mtDNA variant-by-cell matrix is highly sparse, the task
of confident single-cell assignment is challenging. Our previous study
showed that the phenotypic relevance of individual cells can be faith-
fullymodelledinacell-to-cell similarity graph and effectively identified
by anetwork propagation algorithm’®, despite the inherent high dimen-
sionality and extensive sparsity nature of single-cell genomics data.
Here, using asimilar principle, we developed SCAVENGE-L, which uses
the network propagation strategy that utilizes clonal neighbourhood
information and efficiently assigns cells with probabilistic metrics. We
reasoned that the clonal structure of individual cells can be faithfully
distilled into anetwork in which each node represents a cell and each
edge represents mtDNA mutation profile similarity among cells. By
defining cells of interest (that is, HSC clonal group) we could exploit
this network to search highly relevant cells (that is, progeny) using both
network topology structure and cell-to-cell distance.

We first generated a fully binarized mtDNA variants-by-cell matrix
that included all stem, progenitor and differentiated cells from a
given donor. We performed term frequency-inverse document fre-
quency followed by singular value decomposition for normalization
and dimension reduction. The top 30 latent semantic indexings were
used for construction of amutual KNN graph (mKNN). Next, we high-
lighted each HSC clonal group onthe mKNN graph then used arandom
walk-with-restart method to discover the progeny for cells of each
HSC clonal group, which we termed seed cells. The information on
this mKNN graph can spread across, and the information retained in
the network at stationary state can be used to measure, the probability
of any given cell belonging to a HSC clonal group (seed cells). We per-
formed network propagation analysis with a damping factor of 0.05
fromeach HSC clonal group (seed) iteratively. Finally this generated a
cell-by-clonal group probability matrix that measured the confidence
of assignment. We took the maximum probability of above 0.7 as cutoff
to filter out ambiguous progenies (Supplementary Fig. 7a-e).

Because HSCs were also included in the mKNN network and pro-
cessed with network propagation, they could be assigned to a clonal
group using the algorithm via network propagation; meanwhile, the
actual HSC clonal group was used as ground truth. By comparison of
predicted HSC clonal group with ground truth we managed to bench-
mark the robustness of SCAVANGE-L before applying it to assigning
progenies to HSC clonal groups (Supplementary Fig. 7).

HSC clonal output and lineage biases

For the study of HSC clonal output activity we collected both HSCs and
all differentiated progenies from the same donor across two sampling
time points. Based on mtDNA mutations we applied SCAVENGE-L to
assign differentiated progenies to each HSC clone. Next we measured
clonal outputlevel by counting the number of progenies for each HSC
clonalgroup, followed by normalization with HSC clone size (the num-
ber of HSCs per clonal group). We compared clonal output level across
the two sampling time points and computed Pearson’s correlation.
For evaluation of the contribution of haematopoiesis across different
HSC clones we ranked them from highest to lowest and computed the
cumulative proportion of the differentiated progenies contributed
by these clones.

Next, for each HSC clone we computed the proportion of the four
main lineages as defined by cell state: myeloid (monocytes, GMP, MDP,
¢DC), erythroid (MEP, EryP), Meg (MKP) and lymphoid (CD4, CD8, NK,
B, ProB, CLP). Lineage biases were modelled by binomial distribution
against the background by all cells at two sampling time points. HSC

clones with consistent enrichment fold change at both time points were
categorized as biased clones. Enrichment P values at both time points
were combined using Fisher’s method, and combined P values were
adjusted using the R package qvalue as FDR. Enrichment fold change
was calculated for each sampling time point independently. Finally,
HSC clonal output levels and lineage biases were scaled, and Pearson’s
correlations were computed to assess the relationship between output
activity and lineage biases.

Clonal expansion analysis in ageing

First we collected both BMMCs and CD34" HSPCs from two young
donors (31-year-old female and 26-year-old male, young-1 and
young-2, respectively) and two aged donors (76-year-old male and
78-year-old male, aged-1and aged-2, respectively). Using the same
consensus variant-calling pipeline and neighbour-joining algorithm
described previously, we reconstructed the phylogenetic tree for all
four donors. Clonal expansions were estimated by two methods: clone-
and clade-based. For the former we first identified clonal groups as
described above. Briefly, variants were assigned to branches proba-
bilistically and then we cut the tree down onbranches having atleastn
confident variants and with clone group size at least m. The parameters
involved were m (minimum number of cells ina clone, with default 50), n
(minimum number of cumulative variants on the branch tobe cut, with
default1), P(probability of the variant being assigned, with default 0.6)
and D (dump small clones with fewer than D cells). We compared the
distribution of clone sizes between young and aged donors by cumu-
lative proportions. To rule out the potential bias of parameters that
define clonal groups, we adjusted the parameter combinations (m, n,
P, D) and compared clonal size distribution between young and aged
donors (Extended Data Fig. 9¢). Next, Shannon diversity index, S, was
also computed for each donor to measure clonal diversity between
young and aged donors. Given clone group i, size; is the cell number
of that clone. Shannon diversity index is calculated as

i
n=Y size;
1

i . .
s=-Y 51’21e,- y log(Sl,ZIEIJ'

1

For the clade-based method we identified expansion clades as previ-
ously described and implemented them using the function cassiopeia.tl.
compute_expansion_pvalues from the Cassiopeia package (available
at https://github.com/YosefLab/Cassiopeia)”. Briefly, we compared
the number of cells included in the subclone with its direct ‘sisters’
and computed the probability of this observation under neutral selec-
tion with a coalescent model. Clades with P < 0.01and atleast 5% cells
were annotated as expanded clades (Extended Data Fig. 9a). Finally,
the proportions of cells contributed by the expanded clades were
summarized for each donor (Extended Data Fig. 9b).

Inferring single-cell fitness

The phylogenetic structure can be used to infer cell fitness**#%%, We
applied the function infer_fitness function from the jungle package
(available at https://github.com/felixhorns/jungle), which implements
a previously described probabilistic method for inferring relative
fitness coefficients between samplesin a clonal population.

Analysis of loss of chromosome Y

The loss of chromosome Y was inferred at the single-cell level using
the scATAC reads. From uniquely mapped reads using CellRanger-arc
(bam file) we first removed PCR duplicates and counted the number of
unique fragments per chromosome per cell. The number of chromo-
some Y fragments per cell was modelled using binomial distribution
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out of total fragment numbers. We defined cells of LOY as those with
chromosome Y fragment count tenfold lower than expected (P < 0.001).
Local LOY density was computed as number of cells of LOY/clade size.
Enrichment score was computed as the z-score of LOY density nor-
malized by total density. Enrichment was further analysed using a
one-tailed binomial test.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data generated in the manuscript have been deposited in GEO
(GSE219015). Processed Seurat objects are available on figshare:
https://doi.org/10.6084/m9.figshare.23290004. Processed mutation-
calling files are available on figshare: https://doi.org/10.6084/
mo.figshare.24418966.v1. Single-colony, whole-genome sequencing
data are derived from dbGaP (phs002308.v1.p1). Transcription fac-
tor motif database JASPAR2020 (https://jaspar2020.genereg.net/)
was used with ChromVar analysis. The HOCOMOCOV.11 (https://hoco-
mocoll.autosome.org/downloads_v11l) human transcription factor
database was used for ‘find individual motif occurrences’ analysis.

Code availability

ReDeeM datasets can be processed by the consensus variant-calling
command tool REDEEM-V (https://github.com/sankaranlab/redeemV)
and by theinhouse R package REDEEM-R (https://github.com/sankaran-
lab/redeemR) for downstream phylogenetic and integrative analysis.
Thereproducibility codes of the analysesincludedin this work are also
provided (https://github.com/sankaranlab/redeem_reproducibility).
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Extended DataFig.2|eUMI-based error correction viaReDeeM versus
conventionalmutation detection. a, The challenge of mtDNA mutation calling
using conventional WGS insingle colony. b-e, Simulation analysis of mtDNA
mutation calling using WGS vs ReDeeM. b, The design of the mtDNA mutations
with low heteroplasmy (0.1% - 0.5%) for simulation analysis.10 mutations
arerandomly picked for each variantallele frequency (VAF). ¢, Illustration of
the simulation analysis process. One single cell with 1000 mtDNA copies is

simulated, with the designed mutations from panel a. Next, insilico Tn5
fragmentation followed by artificial sequencingis simulated. The resulting
simulated datais analyzed by ReDeeM or conventional mutation calling
pipeline. The highlight-1 (Real mutation M) and highligh- 2 (Error) have

the same total frequency which can only be distinguished by ReDeeM.

d-e, Mutation calling results using conventional WGS ind and the eUMI-based
ReDeeM pipelineine. Also see Supplementary Notes.



© After

Before 311 variants

(mgatk).'

i

a b c
ReDeeM miscATAC MAESTER *® 1.00 _— @
12 =
Source| mtDNA mtDNA  mtRNA € 075 g
Mito enrichment lib Yes No Yes £ S ©
g =)
Coverage Even Even Less even E 0.50 i <z( -
UMI |mtDNA-UMI No mtRNA-UMI 1‘2 | (=)
Consensus correct Yes No Yes % 028 CE, 2
Cell-state info |ATAC+GEX  ATAC GEX % - S ,
Before After *
e f g

MAESTER Coverage
of mitochondrial transcripts

ReDeeM Coverage
of mitochondrial genomes

MAESTER:
0307 top variants(n10>10)

-05 00 1.0

Mitochondrial genome(16K) Strand Corrélation

764/4087 (19%)
ReDeeM variants are
covered in MAESTER

597/764 (78%) covered
variants are supported
in MAESTER

Strand®H ML

Mitochondrial genome(16K) Mitochondrial genome(16K)

Extended DataFig. 3| Comparative analysis of ReDeeM, mtscATAC, and
MAESTER. a, Comparison of the design and features of ReDeeM, mtscATAC
and MAESTER to highlight their similarities and differences. b-d, Comparative
analysis of before (as mtscATAC or DOGMA-seq) and after mtDNA enrichment
(asReDeeM), whichis exemplified by young-1HSPC dataset. b, Percentage of
total reads mapped to mitochondrial genome per cell, before and after mtDNA
enrichment. n=14,808 cells. Boxplot displays data from the 25th to 75th
percentile, and whiskers extending to the minimum and maximum within
1.51QR. ¢, Averaged mitochondrial genome coverage per cell at each position

? 10 ? ERE
g g% 2859
= % = 8 225
s = = M T
2 1 2% S 3¢ 00k

S35 ., ReDeeM:
s s | 23 o fopeet
g s g I E, | 4087 variants
il . i Et
s | . o S, 1111 p—| 1! — T

0 ! ) #* s i o [[] Covered (Mean cov>5) || [ Supported (n5>2)
* * ®
C-A C>G C>T T>A T>C T>G |[] poorly covered [IND

96 classes of substitution

before and after mtDNA enrichment. d, Variant calling before enrichment
using mgatk. 311 confident variants are identified. VMR: per mutation variance
meanratio. e-h, Comparative analysis of ReDeeM and MAESTER, whichis
exemplified by young-2BMMC dataset. e, Mitochondrial genome coverage by
MAESTER. f, mitochondrial genome coverage by ReDeeM. g, Mutational
signatures of 307 top mutations by MAESTER, and 4087 variants by ReDeeM.
nl0 >10: variants presentin atleast 10 cells with a VAF of >10%. h, Consistency
between ReDeeM and MAESTER. n5 > 2: variants presentinatleast 5 cellswitha
VAF of >2%. See Supplementary Notes.



Article

mtDNA mutation distribution on mitochondrial genome (From Young-1)

2004
150
100
50
04

# of mtDNA mutation

1.00 ° S o S o S o o
0.75
0.50

0.25

0.00

asuassIy

1.00
0.75
0.50

0.25 o0 °

B9SUSSUON

5
0.00 %W a0 3 °DoBdo % ofoad o Capd esiiinue o ded

1.00 0
0.75
0.50

025 . — R

Average single-cell level heteroplasmy

0.00

snowAuouAg

1.00
0.75

0.50
°

e i

0.25

o—q
8 i

0.00 »

Buipoo-uoN

i &
MT-ATP6
MT-CQI MT-ATPgeem
o —— 3’ o
MT-ND1 o mmm  TND4 MT-ND5
MT.ND2 MT-CO3

MT-ND4L

DToop

mtDNA Variants
o Missense
o Nonsense
o Synonymous
o Non-coding

MT-ND6
-—
MT-CYB

0 5,000 10,000
Mitochondrial genome (16K)

15,000

Extended DataFig. 4| Potential functionalimpacts of mitochondrial
mutations. a, mtDNA mutation distribution on mitochondrial genome.

Top panel: histogram that summarizes the mtDNA mutation numbers

across mitochondrial genome. Bottom panel: individualmtDNA mutation
coordinates and single-cell heteroplasmy level are shown simultaneously, with
4 categories of mutations: missense, nonsense, synonymous and non-coding.
b-c, Mitochondrial genome-wide dN/dS ratio for missense and nonsense
mutationsin different mutation groups, based on single-cell heteroplasmy

b c
Missense Nonsense Missense Nonsense
25
20 15
2 1.5 g .
> o) ORI | NN
©10 --%---é--s{k ---------------------------- ©
05 1 05
0.0 6 o -
L o o2 PHomo- @ o & «? Homo- Héteroplasmic mutations
SN lasm 19'Q & N lasm appear in >1% cells
& © P y U P! y
Mutation groups by single cell level heteroplasmy
d e
MK M
" Huym BEy EVK Evye Lym Ery
15 20
10
‘mllln_EE i
2 9 — | || 1)
£ 210 maden et aae
kol 20 =z i
3 15 ©
£ 10: 0.5
<
i 1 [
o | | | e [ | ™ = 00]
£ 20 MK Mye
g 15 20
& 10
(o)
o 5 1.5
g Al =N -.-- 9 '|'
< =
= 20 Z1.0fF--4--=1}--1---
o o
S 1
5
p .. . ----. - 0.0
\;0\ Oq’ 3 3 &QQ’ «QQ) ol 0“’ 0"}’ ob‘ 0(" Q‘b g Hematopoietic lineage
& «/é «’O «/o«/v"«/?" ,\/O «,% «/e ~ «/é «’\; «,O enriched variants
TFIIFFFEFFTHFSIS S

levels (as fraction) inb and based on the percentage of cells that carry the
mutationsin c. The barsindicate the 95% confidenceinterval. n = 4,837 mtDNA
mutations. Asterisksindicates dN/dS ratios where the confidence intervals
fromdndscv were infinitive.d, Summarise of the number cell-typerestricted
mtDNA mutations on each of mitochondrial coding genes. e, dN/dS analysis
for cell-typerestricted mutations. Also see Supplementary Notes. The bars
indicate the 95% confidence interval. n =933 mtDNA mutations.



Introduce CRISPR Indel-based
evolvable lineage tracer into mESCs

“KP-Tracer” mESCs

KP-Tracer
chimeric mice

Harvest and analyze
individual tumors

ReDeeM + CRISPR-based
dual lineage tracing analysis

mtDNA somatic variants-based
—>

mtDNA lib lineage relationships

Kras 'S @2 Tioo3 ™, y» [ A > > L Evolvable indel-based
ROSa26 LL-Cas9-P2ATNG - Tracer & \ Target site lib —> lineage relationships
Target sites i =%
\ scRNA lib
> > —
i . > : . SCATAC lib —> Multiomics cell states
U6 guide guide guide mCherry Int site site site
#1 #2 # BC#1 #2 #3
b c d
. o o 03\
Evolvable CRISPR Indel-based lineage tracing Highlight mtDNA somatic mutations o\ CRISPR
(Tumor-1) I . )
. ReDeeM .‘ o :lndel space
: -'\'., ) mtDNA-mutation space =
TR £ K e e o
5 Cells containing L Compute the average Agreement of closeness
L. mtDNA 15412A>T 1ooed rank of distance from with empirical p value
. NCICL ReDeem-k15 to cell i (% rank closer in real
« . « o g0 N CRISPR space versus
£ c Q.. £ ] ! random background )
a . s a . o |@® Pick K-nearest LT
AW, Cells containing neighbors for cell i . N - -
. L MIDNA 2857G>A  (ReDeemkis) /= °  ° S\ | @ Foreach single celli
. ‘.-. = ‘f :
.. Unsupervised subclonal . Randomized | o 9o o /| O K-nearest
2% CRISPR space o [0 ighbors i
RN Clusters | 10007¢ > oo neighbors in
- R Y e1 3 o5 o7 ¥ terate B g ReDeeM
e2 o4 6 Cells containing Compute the | O Random cell
mtDNA 9750C>A reshuffled rank
Dim1 Dim1
e f

ReDeeM-based tree
(Tumor-1)

ReDeeM-based tree
(Tumor-2)

_ Positive AOC ratio=0.71

Posmve AOC ratio=0. 8

ARI for Tumor 1 to 10

——

wﬂwmwj )

-40 p-values 0.01 0.001

mmlﬂ.ijiwlﬂu M !

p-values 0.01 0.001

.ll'r“ﬂll_:l._lﬂﬁ e 2. -

ReDeeM-based tree go.s by various clustering resolutions
(Tumor-3) <
%06
° -
<
i B i
= .
m 1 . e -
0.69 0.86 - l :
Positive AOC ratio=0.78 Sozf ). 4 W - L
: KL
k<)
<

ool M

o
o

T2 T3 T4 T5 T6 T7 T8 T9 T10
p-values 0.01 0.001

BT # mtDNA variant

) # mtDNA variant
5 10

T # mtDNA variant
5 10

g Tumors

CRISPR- vs Mito-based clonal clusters
by example resolution (T1) ARI=0.18

X
R4
=
o
o
2 36912 Mito-based - CRISPR-based
2 ReDeeM-based tree ReDeeM-based tree ReDeeM-based tree clonal clusters Y5, 0+ dlonal clusters
2 (Tumor-4) (Tumor-5) (Tumor-6) .. s ;
o e, ® e ®
3 A oec L3
o o~ ed ' : 5
k] m £ .6
€ b . Ip e [ a -
21 o R . aC e i i I _ oim1 CRISPR- vs Mito-based clonal clusters
2 Positive AOC ratlo 0 61 Positive AOC ratio=0.76 Positive AOC ratio=0.75 by example resolution (T9) ARI=0.3
= 40 m I M | ]i u ' A ' + Mito-based +*CRISPR-based
< MJ I“ |ona| clusters| *““clonal clusters|
0|"L‘|'1""‘|.h’l‘[JJ'1L"r|I'1|LIT‘|u‘""lT‘JI‘ "\J .EI.ILI,L‘ .” “I“\l\il |Jh |l1 |||L‘|IJ.H‘JI" i.lllllullllll el ul | ||LI .2 : .
-40 p-values 0.01 0.001 p- values 0.01 0.001 p-values 0.01 0.001 o= b °2
[T I [ UES TRVRETE DORIAR R B T . & C e j
] # mtDNA variant ) # mtDNA variant B # mtDNA variant £ ‘,5-,* ° ’ ‘,-'f °
51015 51015 5 10 )
Dim 1

Extended DataFig. 5| Validation of ReDeeM lineage tracing via dual-tracer
experiment.a, The design of the dual lineage-tracer experiment with a
Kras;Trp53(KP)-drive lung adenocarcinomalineage-tracing mouse model.
CRISPR-based and ReDeeM-based lineage information were analyzed for
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relationships were computed with weighted hamming distance and visualized
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CRISPRindel-based MDS map are highlighted. d, Schematic of the Agreement
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10 tumors (T1-T10). Various clonal cluster resolutions are tested (presented as
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g, Top examples of HSC subpopulation-specific gene expression profiles,
based on RNA modality. h-1, same analyses as a-e fordonor young-2.n=23,114
cells. Boxplot displays data from the 25th to 75th percentile, and whiskers
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inmain Fig.3cfor donor young-2.n, Same analysis as g, for donor young-2.
o-p, same analysis asin main Fig. 3e, ffor donor young-2. P-values are derived
fromhypergeometric test.
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Extended DataFig. 9|See next page for caption.
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Extended DataFig. 9 | Quantification and validation of clonal structure
alterationinaging hematopoiesis. a, Identification of “expanded clades” in
young and aged donors, which are defined as the clades with more than 0.5%

of total cellnumbers and with expansion significance lower than 0.01.b, The
percentage of cells thatare contributed from expanded clades are summarised
foreachdonor.c, Related to Fig. 5d, Measuring the clonal contribution by
changing the parameters that affect the definition of “clones”. The parameters
involved are m (minimum number of cells as a clone, defaultis 50), n(minimum
number of cumulative variants on the branch to cut, defaultis1), p (The
probability of the variant to be assigned, defaultis 0.6), and D (Dump small

cloneswithless than D cells).d, Related to Fig. 5f. Single-cell fitness analysis in
donoraged-2. e, Related to Fig. 5g. Cell type contributions for each expanded
clade for donoraged-2.f-h, Cell-cycle gene expression analysis for expanded
versus non-expanded cells.n=9,519 and 14,715 cells for Aged-1and Aged-2.
Boxplotdisplays datafrom the 25th to 75th percentile, and whiskers extending
to the minimum and maximum within1.51QR. i-j, Identification of cells with
loss of chromosome Y. i, The normalized number of reads on chromosome

Y per cell across different donors. j, Binomial test to identify cells that
significantly lose chromosome Y with fold-change <0.1and g-value < 0.001.
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Software and code
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Data collection  For cell sorting and gating, BD FACSDiva software was used

Data analysis cellranger-arc-2.0.0 was used for single cell RNA+ATAC preprocessing.
Amulet v1.1 (https://github.com/UcarLab/AMULET) was used for doublet removal
ART-MountRainier-2016-06-05 was used for next-gen sequencing reads simulation
Cassiopeia 2.0.0(https://github.com/Yoseflab/Cassiopeia) was used for CRISPR lineage tracing data
redeemV v1.0.0 (https://github.com/chenweng1991/redeemV) was used for ReDeeM data preprocessing
redeemR v1.0.0 (https://github.com/chenweng1991/redeemR) was used for downstream phylogenetic and integrative analysis
ScEasyMode 1.0.1 was used for CellHashing demultiplexing
Seurat v4.3.0 and Signac v1.5.0 was used for single cell multimodal analysis
SCAVENGE(https://github.com/sankaranlab/SCAVENGE) was used for HSC progeny analysis
jungle(https://github.com/felixhorns/jungle) was used for phylogenetic fitness analysis
FIMO from meme-5.4.1 was used for TF motif scanning

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data generated in the manuscript have been deposited in GEO (GSE219015). The processed Seurat objects are available on figshare: https://doi.org/10.6084/
m9.figshare.23290004. The processed mutation calling files on figshare: https://doi.org/10.6084/m39.figshare.24418966.v1. Single colony WGS data are from
dbGAP:phs002308.v1.p1. TF motif database JASPAR2020 (https://jaspar2020.genereg.net/) was used with ChromVar. HOCOMOCOv11 (https://
hocomocoll.autosome.org/downloads_v11) Human TF database was used for FIMO analysis.
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender We have used the term sex or gender carefully throughout the manuscript. Findings are applied generally. Genders were
considered in study design. Gender was determined based on self-report. Informed consent was obtained under a sample
banking protocol that was approved by the IRB of Mass General Brigham and Boston Children’s Hospital

Population characteristics Age is an important characteristic. We have collected 7 young (range from 20 to 32 yo) and 4 aged donors (range from 69 to
85 yo) and performed systematic comparison across age groups

Recruitment Participants were recruited with self report. Donors with reported conditions or diseases were excluded, but specific screens
were performed. These donors were considered as in general healthy donors

Ethics oversight The Fresh bone marrow samples from healthy young donors were aspirated with informed consent under a sample banking
protocol that was approved by Institutional Review Board (IRB) of Boston Children’s Hospital. The sternum bone marrow
from aged donors was collected following sternotomy for cardiac surgery with informed consent under a sample banking
protocol that was approved by the IRB of Mass General Brigham.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed a priori. Analyses involved thousands of cells per comparison, providing a robust sample size in-
line with similar high-throughput scRNA-seq comparisons and technologies. To well cover different hematopoietic cell populations and clones.
We sampled large sample sizes for main donors: 54,221 cells for young-1, 34,721 cells for young-2; 20,496 cells for aged-1; 25,717 dells for
aged-2

Data exclusions  The data preprocessing for the joint single-cell RNA and ATAC data was performed using 10X Genomics data preprocessing software Cell-
ranger-arc. The basic quality control analysis was as follows: RNA UMI: 1,000~25,000 transcripts per cell, unique ATAC fragment: 1,000 ~
70,000, Fragment on peak minimum percentage: 10%, minimum mtDNA copies per position per cell: 10X. Finally, the possible doublets are
removed by Amulet (using default parameter).

=
Replication All findings discussed in the manuscript are reproducible in two independent sampling from the same individuals as well as two independent )
individuals. S

Randomization  There were no variables or interventions to randomize in this study.

Blinding Blinding is not relevant to our study. Analyses were performed in an exploratory manner where blinding is not possible.
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Antibodies
Antibodies used To further enrich the hematopoietic stem cells (HSCs), an aliquot of the enriched CD34+ cells were stained by one of the following
two antibody panels. 1) CD34 PerCP-Cy5.5 (Catalog #347222); CD45RA Alexa Fluor 488 (Catalog #304114); CD90 PE-Cy7 (Catalog
#561558); and DAPI (Catalog #D1306) as viability dye. Or 2) CD34 BV421 (Catalog #562577); CD45RA-APC-H7 (Catalog #560674);
CD90 PE-Cy7 (Catalog #561558), and 7-AAD as viability dye(Catalog #559925). The cells were further sorted using BD FACSAriaTM for
CD34+CD45RA-CD90+ to enrich HSCs. All antibodies are from BD biosciences.
Validation Each lot of these antibodies is quality control tested by immunofluorescent staining with flow cytometric analysis. The validations are

routinely done in the Sankaran lab by staining human hematopoietic stem and progenitor cells.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) K-562 cell line from ATCC
Authentication None of the cell line was authenticated
Mycoplasma contamination Cell lines are routinely tested for mycoplasma contamination. Results were consistently negative.

Commonly misidentified lines  no commonly misidentified lines were used as part of this study.
(See ICLAC register)
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