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Abstract

Epidemic data are often difficult to interpret due to inconsistent detection and reporting. As

these data are critically relied upon to inform policy and epidemic projections, understanding

reporting trends is similarly important. Early reporting of the COVID-19 pandemic in particu-

lar is complicated, due to changing diagnostic and testing protocols. An internal audit by the

State of Florida, USA found numerous specific examples of irregularities in COVID-19 case

and death reports. Using case, hospitalization, and death data from the the first year of the

COVID-19 pandemic in Florida, we present approaches that can be used to identify the tim-

ing, direction, and magnitude of some reporting changes. Specifically, by establishing a

baseline of detection probabilities from the first (spring) wave, we show that transmission

trends among all age groups were similar, with the exception of the second summer wave,

when younger people became infected earlier than seniors, by approximately 2 weeks. We

also found a substantial drop in case-fatality risk (CFR) among all age groups over the three

waves during the first year of the pandemic, with the most drastic changes seen in the 0 to

39 age group. The CFR trends provide useful insights into infection detection that would not

be possible by relying on the number of tests alone. During the third wave, for which we

have reliable hospitalization data, the CFR was remarkably stable across all age groups. In

contrast, the hospitalization-to-case ratio varied inversely with cases while the death-to-hos-

pitalization ratio varied proportionally. Although specific trends are likely to vary between

locales, the approaches we present here offer a generic way to understand the substantial

changes that occurred in the relationships among the key epidemic indicators.

Introduction

The first confirmed SARS-CoV-2 cases in Florida, USA, were reported in Mar 2020. By the

end of 2022, more than 7 million infections were reported, resulting in more than 80 thousand

COVID-19 deaths [1]. Due to changing testing and reporting policies [2, 3], a straightforward

interpretation of the epidemic data is difficult, however, and a direct comparison of case
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numbers reported during different periods of the pandemic is inappropriate. In particular,

limited testing capacity and strict testing criteria during the early stages of the pandemic likely

systematically reduced the detection of asymptomatic and mild infections. In the State of Flor-

ida, a 2022 internal audit found numerous examples of irregularities in COVID-19 data collec-

tion and reporting during the early months of the pandemic ([4]). Auditors found that case

and death data were sometimes missing, crucial demographic details were not reported, rou-

tine quality checks did not occur, and clear data discrepancies were not reconciled, or were

reconciled using ad hoc methods. Despite these challenges, a proper understanding of the epi-

demiology of COVID-19 during this period and its surveillance is important for future pan-

demic preparedness.

Useful inferences can be made about detection and reporting dynamics by examining case,

hospitalization, and death data over the course of the pandemic. While most widely reported,

cases tend to be unreliable indicators during the early months of the pandemic, as they are

highly influenced by the access and availability of tests ([5, 6]). Nationwide, the United States

Centers for Disease Control and Prevention (CDC) estimated that the infection detection rate

was 13% from Feb 2020 to Sep 2020, but month-to-month variability was high ([7]). Triangu-

lating the case numbers with hospitalizations and deaths—which are smaller numbers but per-

haps more consistently reported—may help to uncover the details of how case detection

changed over this period.

Hospitalization and death data, however, can have their own reporting challenges, particu-

larly during the early stages of a pandemic. Collating data from hospitals can be challenging

without adequate resources, with the set of reporting hospitals changing day-to-day. Deaths

can be undercounted, as shown by the discrepancy between reported COVID-19 deaths and

excess deaths during the pandemic ([8]).

In this study, we attempt to understand the overall epidemiology of COVID-19 in Florida

during the first year of the pandemic by comparing all publicly available data on COVID-19

cases, hospitalizations and deaths. In addition to reported numbers by the State and CDC, we

also use linelist data of reported cases that were publicly available from the beginning of the

pandemic until early Jun 2021. This dataset was published by the Florida Department of

Health (FDOH), updated daily, and included valuable information such as age group and

whether the patient was hospitalized, or died. As these data are no longer available from the

State, we have archived them and provide them via a Zenodo repository (https://zenodo.org/

record/7921083). We verify the consistency of these data with other data sources and use it to

investigate the changes in case and death detection among age groups over the first year of the

pandemic.

Materials and methods

Data

The State linelist was publicly available through an ArcGIS REST API service from Mar 2020

to early Jun 2021, and was updated daily. In this study, we use the linelist downloaded on 26

May 2021. The data includes 2,316,142 detected case entries. For each entry, we used the fol-

lowing information: age, case reporting date, and whether the individual was hospitalized and/

or eventually died. We use the linelist to calculate weekly new cases, hospital admissions, and

deaths by the case reporting date.

The State also supplied daily reports of COVID-19 through its website ([9]), including

cases, hospitalizations, and deaths until Jun 2021, when update frequencies became weekly.

We used these daily reports to construct weekly cases, hospitalizations, and deaths by their

reporting dates.

PLOS ONE Changing COVID-19 cases and deaths detection in Florida

PLOS ONE | https://doi.org/10.1371/journal.pone.0299143 March 28, 2024 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://zenodo.org/record/7921083
https://zenodo.org/record/7921083
https://doi.org/10.1371/journal.pone.0299143


The CDC provided Florida’s daily new cases by case reporting date and daily new deaths by

death date ([1]). We downloaded the dataset on 1 Aug 2022 for this study and constructed

weekly cases by case reporting date, and weekly deaths by death date.

The United States Department of Health & Human Services (HHS) supplied the reported

number of COVID-19 hospitalization daily ([10]). We downloaded this study’s dataset on 1

Aug 2022 and calculated the weekly COVID-19 hospital admission by admission date.

The CDC’s National Center of Health Statistics supplied Florida’s weekly all-cause mortal-

ity with age stratification from 2015 to 2022 ([11]). We downloaded the dataset on 1 Aug 2022

for this study and used the dataset to estimate excess deaths throughout the pandemic.

All datasets are or were publicly available, and we did not have any access to information

that could identify individual cases recorded in any of these datasets. To our knowledge, the

definition of cases, hospitalizations and deaths did not change over the study period.

Study period and wave demarcation

Because the hospitalization and death status of a case in the state linelist was often not known

until more than a month later, we end our analyses on 3 Apr 2021, roughly two months before

the case records end in our linelist. Our study period is thus defined as 1 Mar 2020 to 3 Apr

2021.

During this period, Florida experienced three waves of COVID-19 transmission. We

defined the first (spring) and second (summer) waves as weeks 10 to 19 (8 Mar to 9 May) and

weeks 20 to 40 (10 May to 3 Oct) of 2020, i.e., from the week of lowest case incidence before a

peak to the week of lowest incidence after the peak. Weeks are numbered according to CDC

Morbidity and Mortality Weekly Report guidelines. The third (winter) wave is defined as week

41 (4 Oct) of 2020 through the end of the study period.

Indicator normalization and confidence interval

To compare the trends among all indicators (cases, hospitalizations, and deaths) on the same

scale, we first calculate the average weekly numbers during the first wave for each indicator.

We then normalize each indicator by dividing each by that indicator’s average value in the first

wave.

To account for observation or recording errors, we used a non-overlapping block-boot-

strapping method on the time series [12, 13]. First, we apply the seasonal-trend decomposition

to the time series [14]. The remainder were then sequentially split into 7-day blocks. For each

bootstrapped time series, we randomly sampled the 7-day blocks with replacement and added

the remainder to the seasonal and trend component. After constructing a bootstrapped time

series, we conducted the normalization exercise. Using the 2000 bootstrapped time series, we

then determined the 95% interval for the normalized indicators.

Excess deaths

To estimate excess deaths, we first fit an ARIMA model to all-cause mortality data from 2015

to Feb 2020 (just before the pandemic began in Florida). ARIMA models are a common

approach to forecast time series by describing the temporal autocorrelations in the data [15].

The strong temporal and seasonal trends in all-cause mortality allow us to construct the coun-

terfactual, i.e., the number of mortalities had the COVID-19 pandemic not happened, using

the ARIMA model. Based on the best cross-validation performance, we chose a model with a

second-order autoregressive component and a first-order seasonal autoregressive and moving

average component (52-week periodicity) with drift. We then used the model to predict the

excess deaths on a weekly basis from Mar 2020 onward. Excess deaths were then calculated by
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subtracting the observed deaths from the modelled expected deaths. The model was fitted

using R and the forecast package ([16]).

Ethics statement

This study is approved as an IRB exempt study by the University of Florida IRB

(IRB202200853). Since the data is publicly available and no personally identifiable information

was included in the datasets, consent was not required.

Results

Cases and deaths, but not hospitalizations in the linelist are consistent with

other state and federal sources

As a preliminary evaluation of the reliability of the Florida Department of Health (FDOH)

COVID-19 linelist, we compared the case, hospitalization, and death information in the linelist

with other data sources. These other sources include the FDOH daily COVID-19 reports, as

well as the CDC and HHS.

Cases from all data sources are indexed by case reporting date and are near-identical (Fig 1a).

In principle this could indicate that the data are reliable, but could also be because of a common,

flawed source. In contrast, hospitalization estimates based on the State linelist and daily reports

were likely underestimating the true number (Fig 1b). Hospital admission by case reporting

date, derived from the State linelist, tended to lead the same metric by admission reporting date

from the State’s daily report. This is not surprising, as cases could be detected prior to hospitali-

zation for COVID-19. In terms of total number of hospital admissions, the two sources were

consistent. However, the incidence of hospital admission based on the HHS data, which only

became available in Jul 2020 when HHS mandated hospital reporting, was much higher. Since

most of the hospitals in Florida reported to HHS regularly, we deem the HHS dataset as a more

complete dataset. The sheer discrepancy between the State and HHS data, which worsened dur-

ing the third wave, suggests that the State’s hospital admission numbers were incomplete. This is

consistent with informal communications we have had with State health authorities.

Deaths reported from all data sources were largely consistent (Fig 1c), with the difference

among the sources attributable to the different indexing dates. In general, deaths by case

reporting date (based on FDOH linelist) led deaths by day of death (CDC data) by approxi-

mately 2 weeks. CDC data in turn led FDOH death reporting date, also by 2 weeks.

Using the first wave as the baseline, cases and deaths increased at a

different rate

To directly compare reporting trends in cases and deaths, we calculated the weekly cases and

deaths by case reporting date, which can be done using the FDOH linelist. We normalized

these time series with the mean weekly numbers of the corresponding indicator during the

first wave. This allows us to track the growth rates of these indicators on a common scale.

Because hospital admission data recorded in the linelist were inconsistent (as described in the

previous section), we dropped the indicator from this analysis.

During the transition from the first to the second waves, cases grew more rapidly than

deaths (Fig 2a). During the second wave, the average weekly cases were 7.2 times (95% interval:

6.3—8.2) the average weekly cases of the first wave, but for weekly deaths this ratio was only

2.6 (2.4—2.8). The discrepancy between average weekly normalized cases and deaths was even

larger for the third wave: 11.8 (10.4—13.4) and 2.4 (2.3—2.6), respectively.
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Although anecdotally we know COVID-19 testing became more widely available during

this time, part of these discrepancies can be attributed to the differences in age composition

among the waves. The median age of cases during the first wave was substantially higher than

that during the second wave (Fig 2b), dropping rapidly from 50 to 34 during May. The median

age then stabilized at approximately 40 until late 2020/early 2021, when the older population

started to get vaccinated. A similar decrease in the median age of death can be seen right after

the first wave from 83 to 75 before stabilizing at around 79.

Fig 1. Weekly cases, hospitalizations, and deaths among different data sources. (a) All three case data sources are indexed using case

reporting date. (b) Weekly hospital admissions were indexed by different dates: case reporting date for FDOH linelist, admission reporting

date for FDOH daily report, and day of admission for HHS data. (c) Weekly deaths indexed by different dates: case reporting date for FDOH

linelist, death reporting date for FDOH daily report, and day of death for CDC data.

https://doi.org/10.1371/journal.pone.0299143.g001
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We can obtain further insights by stratifying the data by age group. Again using the first

wave as the baseline, there were disproportionately more cases in the youngest age group (0 to

39) than in the oldest age group (above 65) in the upcoming waves (Fig 2c). Overall, the aver-

age normalized cases were 11.2 (9.1—14.3), 6.2 (5.5—7.0), and 3.9 (3.6—4.2) for ages 0 to 39,

40 to 64, and above 65, respectively, during the second wave and 18.3 (15.0—23.1), 10.0 (9.0—

11.2), and 6.7 (6.3—7.2) for the third wave.

Fig 2. Population-wide and age-stratified normalized weekly COVID-19 cases and deaths and their weekly median age by case

reporting date from Mar 2020 to Apr 2021. Cases and deaths are normalized by their corresponding mean weekly count during the first

wave. All time series are derived from the State linelist and indexed according to the case reporting date. Dashed horizontal lines indicate a

normalized count of 1. (a) Weekly normalized COVID-19 cases and deaths, (b) weekly median age of cases and deaths, and the age-stratified

weekly normalized (c) cases and (d) deaths.

https://doi.org/10.1371/journal.pone.0299143.g002
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In contrast, normalized deaths were similar among age groups, except in the beginning of

the second wave and the end of the third wave Fig 2d. Average weekly normalized deaths for

the second wave were 3.0 (2.2—4.2), 3.0 (2.7—3.3), and 2.5 (2.4—2.7) for 0 to 39, 40 to 64 and

above 65; 2.2 (1.5 to 3.1), 2.6 (2.4—2.9), and 2.4 (2.3—2.6) for the third wave. From Jun to Jul

2020, the youngest age group led those above 65 in normalized deaths by at least one week. As

there is no reason to believe young people would die faster from COVID-19 than seniors, this

suggests that transmission increased in the youngest age group before the older age group.

From Feb 2021 onward, the normalized deaths in those above 65 plummeted much faster than

in other age groups, likely due to the age-structured vaccine distribution program.

Differential drop in case-fatality risk among age groups

Although it is not possible to directly calculate the infection detection probability from these

data, we can use the case-fatality risk (CFR) as a proxy to understand changes in infection

ascertainment. Here, we define a case as a reported infection as the State of Florida did, irre-

spective of symptoms. We calculate the CFR by case reporting date directly from the linelist.

We normalize these numbers based on the mean CFR during the first wave to observe how the

ratio has declined over time. Changes in CFR may be due to either changes in the infection

fatality ratio (e.g., more effective medical protocols, more severe variants) or differential

changes in ascertainment by outcome severity.

Changes in all-age CFR occur in three phases that may be related to the transmission waves.

After the first wave, the all-age CFR declined rapidly from 6.4% (average of first wave), before

stabilizing at around 2.3% from July 2020 until the end of the second wave (Fig 3). The all-age

CFR declined again during the third wave, resulting in an average of 1.3% during the third

wave. The overall second and third wave CFR were about 1/3 and 1/5 of the first wave CFR,

respectively. The CFR continued to decline from Feb 2021 onward, which was when the mass

vaccination program was started.

The rise in number of tests reported by the state over the same period was faster than the

drop in CFR. The mean weekly number of tests increased from 80,000 during the first wave to

438,000 and 593,000 during the second and third waves respectively, or 5.5 and 7.4 times that

of the first wave (Fig 4). As expected, the weekly numbers of tests follow the caseload pattern

closely.

Although CFR among all age groups followed the same declining pattern as all-age CFR,

their rates of decline differed. CFR for 0 to 39 fell immediately after the first wave before stabi-

lizing at around 0.07% for the second wave. Another steep decline for the age group was

observed in Oct 2020, and the CFR remained at around 0.03%, which was less than 1/8th of

the first wave. Interestingly, CFR appeared to increase again after Feb 2021.

CFR for ages 40 to 64 fell gradually throughout the second wave, reaching less than 1/2 of

the first wave CFR at 0.09% by the end of the 2nd wave (Fig 3). Then, the CFR declined rapidly

to 0.06% by Nov 2020 and stabilized at this level. The CFR for those above 60 declined the

slowest relative to the first wave. The CFR for this age group declined by about 30% between

May and the end of Jun 2020, from 0.2 to 0.14. In the third wave, the CFR declined gradually

to 0.07 and remained at this level for the rest of the study period.

Death-to-hospitalization and hospitalization-to-case ratio changed as

caseload increased

To investigate whether the ratio among the indicators changed with community transmission,

we examined the relationship between caseloads and the case fatality ratio, hospitalization-to-

case ratio and death-to-hospitalization ratio. Since hospitalization in the state linelist was
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unreliable (as described above), we focus here on the HHS hospitalization data. To account for

the difference between case report date and hospitalization date, we assumed that the admis-

sion date lagged the case reporting date by a week and adjusted the HHS data accordingly to

yield hospital admission by the case reporting date. Because HHS data did not capture admis-

sion data from all health facilities until Nov 2020, we limited this exercise to the period from

Nov 2020 to Apr 2021, which was within the third wave. Since the age demarcations in HHS

Fig 3. Case-fatality risk (CFR) over the first year of the pandemic. (A) Weekly CFR (dots) and the 3-week moving average (line) for each

age group. Note that the y-axis is log-scaled. (B) Average CFR over each wave for each age group.

https://doi.org/10.1371/journal.pone.0299143.g003

PLOS ONE Changing COVID-19 cases and deaths detection in Florida

PLOS ONE | https://doi.org/10.1371/journal.pone.0299143 March 28, 2024 8 / 14

https://doi.org/10.1371/journal.pone.0299143.g003
https://doi.org/10.1371/journal.pone.0299143


data were different from that of other datasets including the all-cause mortality, we had to use

slightly different age groups for this analysis.

Consistent with the observation from Fig 3, CFR remained steady for all age groups regard-

less of the caseloads (Fig 5a). Given the assumption that the infection fatality ratio remained

similar, this suggests that the case detection probability was consistent and that the use of case-

load as an indicator of transmission strength is proper, but only over this period.

As the caseload increased, the hospitalization-to-case ratio decreased (Fig 5b). On the other

hand, the death-to-hospitalization ratio increased with caseload (Fig 5c). These trends were

consistent among all three age groups.

Excess deaths were explainable by reported COVID-19 deaths except

during summer waves

To understand whether COVID-19 deaths could have been underreported and thus affect our

understanding of the CFR, we estimated the weekly excess deaths using all-cause death data

provided by CDC. We then compare the excess deaths with reported COVID-19 deaths by

date of death.

Excess deaths matched the reported COVID-19 deaths well throughout the pandemic, with

some notable deviations (Fig 6a). As many as 800 weekly excess deaths were not accounted for

by the reported COVID-19 deaths during the summer waves in 2020 and 2021 (Fig 6b). On

the other hand, excess deaths were lower than reported COVID-19 deaths in Mar and Apr in

both 2021 and 2022.

Discussion

The number of cases generally underestimates the actual number of infections in the popula-

tion, especially during the early days of the pandemic when testing was available only to vul-

nerable populations and those who experienced severe symptoms. As a result, hospitalization

and deaths are more reliable measures for understanding the dynamics of infections, although

deaths in particular will be a lagging indicator. Our analyses showed that state hospitalization

data during the early months of the pandemic were incomplete, and it is unclear if the incom-

pleteness was entirely random. Thus, reliable hospitalization data was not available for the first

eight months of the pandemic, highlighting the importance of understanding case detection

dynamics. In contrast, deaths were generally reliably detected, as shown by good matching

Fig 4. Weekly number of SARS-CoV-2 tests reported by Florida.

https://doi.org/10.1371/journal.pone.0299143.g004
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with the excess deaths except during the summer waves. Because cases and deaths in the state

linelist are anchored to a single date (case reporting date), we can derive the case fatality ratio

in a straightforward manner and use the trend to understand the changes in the case detection

rate based on some assumptions.

The infection detection rate cannot be determined directly, although the CFR can provide

some insights. The CFR improved in a stepwise manner with two clear change points

Fig 5. Relationship between weekly case loads and weekly case fatality ratio, hospitalization-to-case ratio and death-to-hospitalization

ratio during the third wave. All indicators are indexed using case reporting date. Cases and deaths were derived from the state linelist.

Hospitalizations were based on HHS data. We assumed that the admission date lags the case reporting date by a week, and adjusted the

hospitalizations time series accordingly. Dashed lines are linear trendlines. Only the third wave is investigated since the first two waves’

hospitalization data was unreliable.

https://doi.org/10.1371/journal.pone.0299143.g005
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coinciding with the beginning of each epidemic wave. In Jun 2020, the CFR was close to 1/3

that of the first wave. This is likely because tests had become increasingly available, especially

to younger age groups with an expansion of testing criteria. In October 2020, the CFR

improved further, potentially due to the increasing use of routine asymptomatic testing in col-

leges and workplaces. Younger populations benefited more from these testing practices, as

supported by the more drastic changes in CFR. The continued drop in CFR after Feb 2021 is

likely due to the fall in the population-wide infection fatality ratio as the older population

Fig 6. Comparison between excess deaths and reported COVID-19 deaths, from Mar 2020 to May 2022. (a) Excess deaths and reported

COVID-19 deaths. We calculate the excess deaths as the observed all-cause deaths minus the expected weekly all-cause deaths based on data

from 2015 to Feb 2020. (b) Excess deaths not accounted for by reported COVID-19 deaths.

https://doi.org/10.1371/journal.pone.0299143.g006
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became vaccinated. Interestingly, the younger population (0 to 39) recorded an uptick in CFR

during this period. It is unclear if this was predominantly due to a reduction in detection or an

increase in disease severity.

As the availability of testing changed dramatically during the first year of the pandemic,

much of the observed trends in CFR were likely due to changes in infection detection. How-

ever, improved care, such as the introduction of more effective treatments [17], likely

improved the infection- and case-fatality risk. In Jun 2020, a preprint describing the benefit of

dexamethasone was released (now peer-reviewed as [18]), coinciding with the drastic decline

in CFR, especially among people above age 65. As a result, using changes in CFR to directly

infer the changes in infection detection will likely overestimate ascertainment of infections.

Nevertheless, this allows us to infer the upper limit of the changes to infection detection. For

example, the infection detection in the second wave would have at most increased by 2.8-fold

compared to the first wave, though the average weekly number of tests increased by 5.5-fold.

At the time the second wave was occurring, we observed that young people seemed to be

accounting for a large proportion of reported cases. A critical question was whether we might

be going into a younger and thus less severe wave, or if transmission would spill over into

senior populations, driving an increase in deaths. Here we show that both were at play: CFR

dropped, causing the wave to be less severe than the case numbers at the time suggested, but

normalized deaths suggest that transmission actually did peak 1 to 2 weeks earlier in the youn-

ger population than the older population. After this, normalized deaths remained similar

among all age groups for the rest of the study period, until the age-structured vaccination pro-

gram started. The phenomenon of younger people driving early transmission during a wave

has been observed elsewhere ([19]), and has a likely explanation in contact network theory:

individuals with more interactions (often students and workers, in this case) tend to get

infected before those with fewer (often retirees) ([20]).

The pairwise ratios among cases, hospitalizations, and deaths suggest that there were fine-

scale variations in the case detection rate and infection fatality ratio within a single wave that

were hard to disentangle using publicly available data. During the third wave, there were more

deaths per hospitalization as caseloads increased but fewer hospitalizations per detected case,

resulting in a stabilized CFR across all age groups. Two hypotheses could explain these pat-

terns. First, hospitals might have admitted only more severe cases as cases surged, resulting in

disproportionately more deaths among those hospitalized and fewer hospitalizations among

diagnosed cases. It is unclear if de facto hospital admission criteria were changed during the

peak of the wave to support this hypothesis, although to our knowledge formal admission cri-

teria did not change. It is possible that hospital policy did not change, but healthcare-seeking

behavior did, e.g. as emergent care wait times increased. Alternatively, the quality of care

might have decreased as more people were hospitalized, reducing the ratio of intensive care

specialists to patients and thus an increase in deaths among hospitalized patients. Meanwhile,

case detection for mild symptomatic or asymptomatic infection at the peak of the wave might

have improved as people were more conscious about ongoing community transmission. The

infection fatality ratio and case detection rate would have to increase and work in tandem to

stabilize the CFR as transmission intensified under this hypothesis.

Underreporting of COVID-19 deaths affects some of our analyses. Most excess deaths

unaccounted for by reported COVID-19 deaths occurred during the height of summer waves

in 2020 and 2021. This could be due to underreporting of COVID-19 deaths as the surveillance

systems were overwhelmed, or that care for non-COVID-19 illness diminished with COVID-

19 surges. The former would have impacted our analysis of the case detection rate during the

second wave since the actual CFR might have been higher resulting in a lower case detection

rate than our estimates. Nevertheless, this would have no impact on our estimates for the third
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wave and our analysis of the pairwise case, hospitalization and death ratios, which was based

only on the third wave.

Much of our analysis would not be possible without a publicly available linelist of reported

cases. Linelist data has been crucial in understanding heterogeneity in transmission trends, risk,

and disease burden (e.g. [19, 21–24]) and in parameterizing mathematical transmission models

([25, 26]). In the United States, few states provided publicly available or daily updated linelist

data as Florida did, let alone both. Unfortunately, this extremely valuable resource was discon-

tinued in early Jun 2021, preventing us from assessing how case reporting rates changed as vac-

cination and at-home testing became common. Nevertheless, the linelist data from the first 16

months of the pandemic is key to better understanding and interpreting the case, hospitaliza-

tion, and death dynamics during the early pandemic period when the detection rate was likely

the most variable. As a result, it enables the parameterization and development of transmission

models that properly recreate the transmission pattern in Florida ([27, 28]). Making linelist

data readily available will help lower the barrier for researchers to learn more from COVID-19

as we prepare ourselves to respond more effectively to future public health emergencies.
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