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Abstract

Empirical evidence shows that memories that are frequently revisited are easy to recall, and

that familiar items involve larger hippocampal representations than less familiar ones. In line

with these observations, here we develop a modelling approach to provide a mechanistic

understanding of how hippocampal neural assemblies evolve differently, depending on the

frequency of presentation of the stimuli. For this, we added an online Hebbian learning rule,

background firing activity, neural adaptation and heterosynaptic plasticity to a rate attractor

network model, thus creating dynamic memory representations that can persist, increase or

fade according to the frequency of presentation of the corresponding memory patterns. Spe-

cifically, we show that a dynamic interplay between Hebbian learning and background firing

activity can explain the relationship between the memory assembly sizes and their fre-

quency of stimulation. Frequently stimulated assemblies increase their size independently

from each other (i.e. creating orthogonal representations that do not share neurons, thus

avoiding interference). Importantly, connections between neurons of assemblies that are

not further stimulated become labile so that these neurons can be recruited by other assem-

blies, providing a neuronal mechanism of forgetting.

Author summary

Experimental evidence suggests that familiar items are represented by larger hippocampal

neuronal assemblies than less familiar ones. In line with this finding, our computational

model shows that the size of memory assemblies depends on the frequency of their recall

(i.e. the higher the frequency, the larger the assembly), which can be explained by the

interplay of online learning and background firing activity. Furthermore, we find that

assemblies representing uncorrelated memories increase their sizes while remaining

orthogonal, in line with findings with single-cell recordings. To model these empirical
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findings, we propose to go beyond the standard attractor network memory models and

use instead a dynamic model to study memory coding.

Introduction

Memories are continuously shaped by our experiences [1]. When meeting a new person, we

build a new memory that can be reinforced if meeting the same person again several times.

Alternatively, if we do not meet this person again, or if too much time passes until the next

encounter, we may forget them. This simple example illustrates that memories are dynamic

and dependent on how often they are revisited. While it has been argued that the efficiency of

a memory system is measured through the stability of its representations through time, it is in

fact the dynamical changes of memory representations that support flexible behaviour and

generalization [2]. In other words, our memories are far from static engravings in a wax tablet,

as famously argued by Plato, and we should consider how they can be modulated depending

on further experiences. In fact, it seems natural to reinforce the representations of people that

become familiar after several encounters and not of others that we do not meet again.

At the neuronal level, memories are represented by specific patterns of neural activity [3,4]

and each time a memory is recalled, the strength of the synaptic connections among the neu-

rons forming the corresponding memory trace tends to be enhanced [5–7]. Conversely, the

strength of the connections within ensembles of neurons encoding memories which are not

frequently revisited tends to fade [8–10].

Following the seminal study of patient H.M. [11], it has long been recognized that the hip-

pocampus and surrounding cortex, known as the medial temporal lobe (MTL), is critical for

memory functions [12,13]. Neurons in the MTL show highly selective, invariant and explicit

responses to specific people or objects [14,15], and, when measuring responses to individual

objects or people, there is a larger tendency to find responses to familiar things [16]. Conse-

quently, there is a relationship between the familiarity of a stimulus and the size of the assem-

bly encoding it–i.e. the more familiar the stimulus, the larger the assembly representing it and,

therefore, the higher the chance to find neurons responding to familiar stimuli compared to

those coding for relatively unknown items. This is in line with fMRI results showing a larger

hippocampal activation for stimuli that are known to the subjects in a visual paradigm [17].

The larger hippocampal activation for familiar memories has been proposed to act as a booster

for their recollection [17], contributing to the fact that people tend to better recall things that

are personally relevant to them [18–20].

Memory storage and recall in the hippocampus have been modelled using attractor neural

networks [4,21–25]. In attractor neural networks each memory (or pattern) is stored in a set of

neurons that gets activated via pattern completion, whenever a subset of them receives a large

enough input. Memory patterns are encoded by assemblies of neurons strongly connected to

each other which are formed via Hebbian learning—i.e. neurons that tend to be coactivated by

an input increase their synaptic connections [7]. Nevertheless, the standard design of attractor

models [4] only reflects the final outcome of this Hebbian learning process and, after an initial

learning phase, the synaptic connectivity is fixed and memories become static attractors repre-

sented by assemblies that do not change anymore. This static configuration after learning does

not capture the dynamic nature of real-life memory processes, involving memory formation,

reinforcement and forgetting. Attractor models using dynamic learning rules have been pro-

posed [26–37]. However, only few of these studies have implemented Hebbian learning in a

way that memory assemblies can be continuously formed and dynamically updated [33–37].
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These studies particularly focused on the analysis of the compensatory mechanisms needed to

implement Hebbian learning in a stable manner but none of them has investigated how mem-

ory representations could change with the familiarity of the stimulus–i.e. updating the assem-

blies storing the memories depending on how often the memories are revisited.

In this work, we designed a rate attractor neural network with dynamic synapses to model

the processes of memory formation, reinforcement and forgetting and used this model to rep-

licate the experimental finding that the size of the assembly should increase with the frequency

of presentation of the stimulus, as found with human MTL neurons [16]. Fig 1A illustrates our

main hypothesis. At t0, the network is at rest and there are only weak connections between the

neurons. At t1, a group of neurons is stimulated, which leads to the increase of their connec-

tion strength, eventually forming a neural assembly. At tN, further stimulation brings the con-

nections within the assembly to their maximal values. Furthermore, due to spontaneous

activity, weak connections form between the assembly neurons and other neurons that were

not stimulated (in light grey) but happened to fire by chance during the presentation of the

stimulus. These weak connections increase the probability of these neurons to fire when the

stimulus is presented again. When they do so, they reinforce their connections with the assem-

bly neurons and may become part of the assembly, thus firing at a later time tN+M consistently

with each stimulus presentation, even if not directly stimulated, by pattern completion. Con-

versely, those neurons that initially formed weak connections with the assembly and do not

fire again at the time of the new stimulation go back to baseline connections’ levels and will

not join the assembly.

Fig 1. Hypothesis of interplay between Hebbian learning and background noise in assembly formation and evolution. A) Schematic

of assembly formation and evolution for a network storing and retrieving one assembly. At time tN+M two further neurons have joined the

assembly. B) Formation and evolution of multiple non-overlapping assemblies. The 3 assemblies undergo the same assembly formation

phase (t0. . .tN) but, during the following stimulation phase (tN. . .tN+M), the assembly evolution is different for the 3 assemblies.

fstim1. . .fstimN denote the repetition frequency of stimulation.

https://doi.org/10.1371/journal.pcbi.1011727.g001
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An obvious consequence of the mechanism represented in Fig 1A is that the size of an

assembly depends on how often it is stimulated, as illustrated in Fig 1B. We therefore hypothe-

size that assemblies that are not stimulated will tend to disappear, while those that are repeat-

edly stimulated will tend to grow proportionally to the frequency of stimulation (Fig 1B). In

order to model this mechanism, we designed a network starting from the rate attractor model

presented in Gastaldi et al. [38], introducing an online Hebbian learning rule and noisy firing

rate activity, to study how the size of assemblies changes depending upon the presentation of

new and familiar stimuli.

Results

We modelled the joint action of Hebbian learning [7], with ongoing neural activity [36,39,40]

and repeated stimulus presentation to study whether the size of the assemblies representing

memories in the MTL depends on the familiarity of the stimulus [16]. We built our model

starting from a classic recurrent neural network of N rate neurons with fixed firing threshold,

fixed synapses’ configuration and no background firing activity [4], which we adapted to have

dynamic memory representations, as described in Methods and below. First, we introduced a

neural adaptation mechanism through the use of a moving firing threshold θi(t) [41–44]. Next,

we introduced ongoing background activity (Eq 6) and Hebbian learning (Eq 7), such that,

after repeated stimulation of a pattern, the connections among neurons with correlated activity

(those encoding the pattern) were selectively strengthened.

We tested how the combined action of Hebbian learning and background activity influ-

ences the network connectivity, using a network of N = 100 neurons, where 10 of them were

stimulated with a current of duration T = 5 a.u. and intensity I0 = 1 for 15 times (Fig 2A, left).

Before the beginning of the simulation, connections were initialized at zero. When the top 10

neurons were stimulated, a weak assembly was created (at t1), which got reinforced after 14

repetitions of the stimulation (t15). We found that at t15 new connections were formed between

stimulated neurons and non-stimulated neurons. This was due to some of the non-assembly

neurons firing by chance during the initial presentations of the stimulus, therefore establishing

an initially weak connection with the assembly that got reinforced if they happened to fire

again during the following presentations. Thus, we observe at t15 that two of the neurons

(number 19 and 98), which were initially not part of the assembly, have established a strong

connection with the stimulated neurons, thus joining the assembly. In contrast, when the same

stimulation paradigm was applied for the model with online learning but without noise (Fig

2A, right), no connections were formed between the stimulated and non-stimulated neurons

at t15, which means that, as expected, both the noise and the learning rule are necessary to have

dynamically changing assemblies.

We also introduced an ongoing decay of synaptic strengths. Without synaptic decay, the

standard deviation of the connection matrix increases drastically, since individual weights can

grow to their maximal values (see Fig 2B). The decay of synaptic connections is consistent

with the idea that memories tend to be forgotten if not frequently recalled [2,8–10,45,46].

Finally, we introduced two factors, SR,i(t) and SW,i(t), in order to mimic the effect of addi-

tional plasticity mechanisms. The introduction of those factors was necessary in order to have

a functional behaviour of the network, as shown in Fig 2C with a network of N = 100 units sub-

ject to a rectangular pulse train stimulation. Without SR,i(t) and SW,i(t) (upper panel of Fig

2C), when new neurons were added to the stimulated assembly (t55), the assembly activity did

not go down to baseline firing after the stimulation offset (t = 51625 a.u.). This is because, fol-

lowing the recruitment of new neurons, the recurrent input into the assembly was so strong

that it always stayed above the moving threshold (i.e. neural adaptation stopped working
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effectively). Conversely, when SR,i(t) and SW,i(t) were appropriately implemented (lower panel

of Fig 2C), those factors counterbalanced the increase in recurrent input. Indeed, in that case,

when new neurons were recruited (t500), the assembly activity went down to baseline levels

after the offset of the external stimulation (t = 64975 a.u).

The network had different mechanisms acting on different timescales. This is highlighted

in Fig 3, where 10 neurons in a network of N = 100 were stimulated 10 times, beginning at

t = 50000 a.u. The forgetting acts on a slower timescale (represented by the decay of the mean

weight within the assembly, shown in the lower panel) than the memory formation and rein-

forcement (represented by the increase of the mean weight, upper-left panel), which in turn

act on slower timescales than the neural activation and adaptation (represented by the increase

of rate and firing threshold, respectively, upper-right panel). In the upper-right panel, it can be

observed that the dynamics of the firing threshold (regulated by the neural adaptation mecha-

nism) follows the dynamics of the neural activation, eventually leading to the decay of neural

activation after the offset of the external stimulation (t = 50275 a.u.).

Assembly formation and reinforcement

First, we studied the dynamics of memory formation and reinforcement using a single pattern.

For this, we repeatedly stimulated 10 neurons, within a network of N = 100, with rectangular

pulses. As observed in Fig 4A, the mean weight within the stimulated neurons initially

increased during each stimulation and reached the maximum value after 5 stimulations. The

response of one of the stimulated neurons to test stimulations (see Experimental Paradigms in

Fig 2. Model construction. A) Role of spontaneous background activity and learning rule. Model with learning rule and with noise (left). Model

with learning rule and without noise (right). (Parameters: αw = 0; αr = 0; wmax = 0.1; wmin = −0.05; Dθ = 1; τθ = 7 a.u.; η = 1; τw = 50 a.u.; β = 0;

C = 0 and C = 0.006 for the cases without and with noise, respectively B) Mean and standard deviation of the connection matrix, without and

with forgetting. The mean and standard deviation of all network connections in absence of any external stimulation are displayed both in the

case of model without (i.e. β = 0; left) and with (right) forgetting. (Parameters: η = 1; τw = 50 a.u.; αw = 0; αr = 0; wmax = 0.1; wmin = −0.05; Dθ = 1;

τθ = 7 a.u.; C = 0.006; β = 0 and β = 0.0025 for the cases without and with forgetting, respectively.) C) Firing rates for all network neurons at

different times, without and with scaling factors of the inputs. (Parameters: αw = 0; αr = 0; wmax = 0.1; wmin = −0.05; Dθ = 1; τθ = 7 a.u.; C = 0.006;

η = 1; τw = 50 a.u.; β = 0.0025; f = 1/(30a.u.). In case of scaling factors of the inputs: αw = 1; αr = 2; wmax = 0.3; wthr = 0.05.).

https://doi.org/10.1371/journal.pcbi.1011727.g002

Fig 3. Timescales of forgetting, learning, neural adaptation and activation. Starting at time 50000 a.u., a specific

population was stimulated repeatedly 10 times with a repetition frequency f ¼ 1

30 a:u:. The weight increased during the

first 130 time steps after the beginning of the stimulation and decayed at the end of the stimulation (t = 50275 a.u.)

over about 50000 time steps. The mean weight, rate, input field and firing threshold of the stimulated neurons are

shown, zooming at timescales of interest.

https://doi.org/10.1371/journal.pcbi.1011727.g003
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Methods for further details on test stimulations) at each stimulation onset (t1,t2. . .t10) is shown

in Fig 4B. After the first two stimulations, we observe a transient response that decayed to zero

immediately after the stimulation offset (marked with the red vertical line). Then, for the third

stimulation, we observe that the transient response kept increasing further after the stimula-

tion offset, due to the recurrent inputs coming from the other stimulated neurons, which

could temporarily sustain the activation because of the increased weights shown in Fig 4A.

This transient response increased further with further stimulations, saturating after 5 stimula-

tions, because the connections between the stimulated neurons had reached the maximum

weight. In order to establish whether a neuron was part of an assembly, we considered the fir-

ing rate value at twice the stimulation time (t = 2 a.u.) and compared it with a threshold, set at

rthr = 0.5 (see Methods). Consistent with the previous arguments, we observe that at t3 the neu-

ron had joined the (newly formed) assembly (Fig 4B, bottom right panel).

Fig 4. Assembly formation and reinforcement. A) Mean synaptic connection, within stimulated neurons (blue),

within non-stimulated neurons (green) and among stimulated and non-stimulated neurons (orange). t1 to t10 indicate

the stimulations’ onset times. The mean connection within stimulated neurons increases upon stimulation, since their

firing rates are strongly correlated, until the hard upper bound of the weights is reached. The curves depicting the

mean connection within non-stimulated neurons and the mean connection among stimulated and non-stimulated

neurons are superimposed since their values remain close to zero. B) Responsiveness criterion for an exemplar

stimulated neuron. The activity traces of one of the stimulated neurons when tested at t1 to t10 are displayed. Within

each plot: the vertical red line indicates the end of the test stimulation (T = 1 a.u.); the horizontal dashed black line

refers to the threshold used to define a significant reverberating activation. The first reverberating activity (i.e. the

attractor is about to be formed) is observed at t3; from t4 to t10 the maximum value of the firing activity increases (i.e.

the attractor has been reinforced) until it stabilizes. C) Weight matrices at times t1, t2, t3, t5, t10.

https://doi.org/10.1371/journal.pcbi.1011727.g004
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The process of the assembly formation due to repeated stimulation of a subset of neurons

can also be seen in the connectivity matrix shown in Fig 4C, where we observe an increase in

the connection strengths for the first 10 neurons after each stimulation, reaching a maximum

connectivity after 5 stimulations. Although it is very difficult to objectively define biological or

behavioural time scales, as these depend on many factors (e.g. emotional saliency, context,

association with other memories), it can be noted that the formation and reinforcement of the

assembly within 5 repetitions of the stimulation seems reasonable—i.e. not saturating at the

first presentation of the stimulus, thus showing the effect of reinforcing the assembly connec-

tions, but also not taking way too many trials.

Assembly evolution

Next, we characterized the evolution of an assembly that gets further stimulated following its

formation and reinforcement. As before, we repeatedly stimulated 10 out of N = 100 neurons,

but in this case 7000 times.

The firing of the neurons and their connections changed during the simulation (Fig 5A). In

the first stage, at 1020 a.u. (after 17 stimulations), we observe that the stimulation activates the

stimulated assembly, as expected. In the connectivity matrix, there are strong connections

between the stimulated neurons, which had already created a strong assembly, following the

process shown in the previous section. Importantly, no connections had formed between the

assembly neurons and the other neurons. In the second stage, at 150,000 a.u. (after 2500 stimu-

lations), both the firing rate plot and the connectivity matrix show that the stimulated assembly

had recruited 15 other neurons, in line with the hypothesis that repeated stimulation leads to

an increase of the assembly representing the stimulus (see Fig 1). At 300,000 a.u. (after 5000

stimulations), another 15 neurons were recruited to the assembly and, finally, at about 420,000

(after 7000 stimulations) another 5 neurons were further added to the assembly.

Consistently with the above observations, we find that the assembly size increased as the

simulation progressed (Fig 5B). After the formation of the assembly, shown in the inset of the

panel, we observe that before about 20,000 a.u. there was hardly any change in the assembly

size, but then an increased number of non-stimulated units got recruited into the assembly.

More specifically, there was a monotonic increase of the assembly size until about 200,000 a.u.,

where the assembly size started to increase more slowly, finally reaching a size of 45 neurons at

420,000 a.u. This slowing down of the increase of the assembly size was determined by the bal-

ance between the assembly increase regulated by the learning process, the decrease given by

the forgetting mechanism and the input fields’ normalization factors, which made it less likely

for non-stimulated neurons to join the assembly for relatively large assembly sizes (see S1 Fig

for observing the network evolution for a 10 times longer simulation).

Initially, the mean connection strength between the non-stimulated and stimulated neu-

rons was relatively weak (Fig 5C, each curve represents the mean connection of a non-stimu-

lated neuron with all 10 stimulated neurons). Then, as soon as the connection of a non-

stimulated neuron with the stimulated assembly got strong enough to sustain its coactivation

with the stimulated neurons, that connection was further strengthened, until reaching the

maximum synaptic strength (wmax = 0.3).

Assembly evolution for different stimulation frequencies

Our work draws inspiration from experimental findings in the human MTL suggesting that sti-

muli presented more frequently are encoded by larger assemblies of neurons. In order to study

the relationship between the assembly size and the stimulation frequency within our model, we

first considered the case of a network learning a single pattern presented at different frequencies.
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Stimulations were given with frequencies f ¼ 1

30 a:u: ; f ¼
1

40 a:u: ; f ¼
1

60 a:u: f ¼
1

120 a:u:. As

expected from our working hypothesis, there was a larger increase of the assemblies that were

more frequently stimulated (Fig 6A). To further study this effect, in Fig 6B we show the assembly

sizes at four stages of the simulations for the four frequencies tested. At stage 1, shortly after the

initial assembly formation, all assemblies had the same size, but in the following 3 stages there

was a significant difference between all the frequencies (in all cases, an ANOVA comparing all

frequencies gave p< 10−12 and the post-hoc t-test comparisons gave p< 10−7).

Looking at the neurons’ responses, at the four stages defined above and for the four differ-

ent frequencies (see Fig 6C for one exemplary simulation), we observe that for higher stimula-

tion frequencies more neurons were recruited into the assembly, in line with the previous

plots.

A question arises of whether the increase in assembly size that we observe is dependent on

the stimulation frequency or on the number of stimulations. Therefore, in the left panel of

Fig 5. Assembly evolution upon stimulus repetition. A) Firing rates (top) and connections (bottom) of all 100

neurons at different stages of the assembly evolution. The number of active neurons increases over time. B) Number of

assembly neurons over time. Initially only the 10 stimulated neurons respond. Inset: zoom with enlarged time scale. C)

Mean connections of non-stimulated neurons with stimulated neurons. For each of the non-stimulated neurons, the

average of its connections with the 10 stimulated neurons is shown. If a neuron joins the assembly, its mean weight

value goes to wmax = 0.3.

https://doi.org/10.1371/journal.pcbi.1011727.g005
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Fig 6D, we plot the assembly sizes for the 4 frequencies tested as a function of the number of

stimulations, while the right panel shows the assembly sizes after 3500 stimulations (marked

with a dotted vertical line in the left panel). As before, there was a significant difference of the

assembly sizes for the different frequencies (ANOVA, p< 10−12), and the post-hoc compari-

sons showed that these differences were significant in all cases (t-test, p< 10−12), except

between f ¼ 1

30 a:u: and¼ 1

40 a:u:. The fact that the assembly evolution was linked to the stimula-

tion frequency, rather than solely to the number of stimulations, is due to the contribution of

the forgetting term (Eq (8)), which had a stronger effect for the lower frequencies. This is

because the forgetting term had more time to bring the increase of weight produced by the

Hebbian learning back to zero, while having a less prominent effect for the higher frequencies

and thus the similar assembly sizes after 3500 stimulations.

Assembly evolution with two concurrent patterns

Having assessed the relationship between stimulation frequency and assembly growth in a sin-

gle-memory network, we then examined the case of a network storing and retrieving two non-

overlapping patterns. Here we aimed to investigate if and how the evolution of each assembly

might influence the other one (e.g. the possibility that the assemblies take neurons from each

other, or that they recruit the same neurons that were initially not part of any assembly). We

were particularly interested in investigating if initially orthogonal neural assemblies would

remain orthogonal when they evolve, or if, alternatively, one of the assemblies would show a

progressively larger increase and eventually recruit neurons from the other one, showing a

‘winner takes all’ dynamics. First, we stimulated the network with two rectangular pulse trains,

given at different times and at the same frequency (f1 ¼ f2 ¼ 1

60 a:u:) to two non-overlapping

assemblies. We found that the average size (over 10 simulations) of the two assemblies

increased similarly over the simulation (Fig 7A). It can also be noted that in none of the simu-

lations the difference between the assemblies’ sizes increased over time, showing that there was

not a ‘winner takes all’ dynamics. To further quantify the evolution of the assemblies, we con-

sidered three different stages (t = 1000 a.u.; t = 200000 a.u. and t = 420000 a.u.), from the for-

mation of the assemblies to their reinforcement.

We examined the firing rates of all neurons and the connectivity between them in order to

establish which neurons were recruited by the assemblies at each stage (see Fig 7B for one

exemplary simulation). In the first stage, we observe the two formed assemblies (P1 and P2)–

the first involving neurons 1 to 10 and the second one involving neurons 11 to 20 –each of

them stimulated at different times and (still) not recruiting other neurons. The weight matrix

shows two well separated clusters without connections between them or with the other neu-

rons. At stage 2, we observe that each pattern had recruited neurons that initially were not part

of the two assemblies (i.e. neurons 21 to 100). This increase in the number of neurons of each

assembly is further observed at stage 3. Notably, from a close observation at the firing rate

matrices we observe that P1 and P2 recruited different neurons and no neuron is shared by the

two patterns, indicating that patterns remain orthogonal. In line with this observation, the

Fig 6. Assembly evolution for different stimulation frequencies. A) Number of assembly neurons over time for

networks stimulated with 4 different frequencies. The bold lines indicate the mean over all the repetitions (n = 10)

while the background lines represent the single repetitions. B) Assembly size for each of the frequencies at different

times. The coloured squares indicate the mean+std while the grey circles in the background represent the single

repetitions’ results. C) Firing rates for all neurons at different times. For each frequency, an exemplar simulation is

considered. D) Number of assembly neurons over stimulation number. The bold lines indicate the mean over all the

repetitions (n = 10) while the background lines represent the single repetitions. On the right, the assembly size reached

after 3500 stimulations for each of the frequencies is shown.

https://doi.org/10.1371/journal.pcbi.1011727.g006
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weight matrices show no cross-connections between the two assemblies. The result of main-

taining orthogonality between patterns is a consequence of the synaptic normalization—

implemented in the model through the factor Sw,i(t)—which normalizes the input field of each

neuron according to the summed connection weight. The normalization factor Sw,i(t) down-

scales the input fields of the neurons belonging to an assembly, thus making them less likely to

be recruited by the other assembly compared to the other (not yet recruited) neurons.

In order to illustrate how Sw,i(t) downscales the input fields of assembly neurons, the left

panel of Fig 7C depicts the distribution of the input fields (i.e. the variable h defined in Eq 2) of

the stimulated neurons of P1 and P2 (purple) when stimulating the other assembly (i.e. the

input field of P1 when stimulating P2 and vice versa), as well as the input fields of the neurons

not belonging to these assemblies (orange), excluding, for any unit later recruited into either

P1 or P2, the stimulation trials after which it had been recruited. We observe that the input

field distribution of the neurons not part of either assembly reaches higher input field values,

thus being more likely for those neurons to fire together with the stimulated neurons and join

the assembly. As a consequence of this, only neurons not belonging to any assembly are avail-

able to be recruited, thus making the difference between recruiting neurons from one of the

two stimulated assemblies (i.e. neurons 1 to 20) and those initially not belonging to an assem-

bly (i.e. neurons 21 to 100) highly significant (t-test; p< 10−12) (Fig 7C, right).

Next, we repeated the simulations with two non-overlapping neuronal assemblies, but now

using different frequencies of stimulation (f1 ¼ 1

60 a:u: ; f2 ¼ 1

120 a:u:). As expected, we observe

that the two patterns had a different evolution over time (Fig 8A) (see S6 Fig for direct compar-

ison with the evolution over time observed in Figs 6A and 7A). Starting with an equal assembly

size immediately after their formation (stage 1), the pattern that was stimulated less frequently

barely increased its size, whereas the other one showed a marked increase with a size that was

significantly larger than the one of the other pattern in stages 2 and 3 marked in the plot (t-

test, p< 10−12 in both cases). As for the previous simulations, the analysis of the firing of all

the neurons in the network and their connectivity pattern allows to assess which neurons were

recruited by the two assemblies at the three stages of the simulations (see Fig 8B for one exem-

plary simulation). In the first stage, we observe the two distinct patterns (the one on top, from

neuron 1 to 10, is the one stimulated more frequently), and, as the simulation progressed, in

stages 2 and 3 we notice that the pattern stimulated with a high frequency (and not the other

one) recruited other neurons, but none of these corresponded to the other pattern. As before,

this was due to the fact that the other neurons (i.e. those not belonging to a pattern) reached

higher values of the input field (left panel of Fig 8C) and were therefore recruited in a signifi-

cantly higher proportion (right panel of Fig 8C) (t-test; p< 10−12).

Summarizing, in none of our simulations (both using patterns stimulated with the same fre-

quency or with different frequencies) we obtained an overlap between the patterns, which

remained orthogonal after changing their sizes. Patterns stimulated with non-overlapping

Fig 7. Assembly evolution with two concurrent patterns stimulated at the same frequency. A) Number of neurons per assembly over

time. Left: The bold lines indicate the mean assembly sizes over all the repetitions (n = 10) while the background lines represent the single

repetitions. The background grey lines indicate the difference of the assemblies’ sizes for each repetition while the bold grey line represents

the average difference. Right: The coloured squares indicate the mean+std while the circles in the background represent the single

repetitions’ results. B) Firing rates for all neurons and weight matrices at different times for a single simulation. C) Quantification of the

higher tendency of recruiting neurons with weak synaptic connections. Left: Input field distributions for: P1 (neurons 1 to 10) while

stimulating P2 (neurons 11 to 20), in purple; P2 while stimulating P1, in purple; other neurons (neurons 21 to 100; in case recruited, trials

after recruitment are excluded) while stimulating P1 or P2, in orange. For each of the two distributions, the vertical solid line represents the

mean while the dashed line corresponds to the 95th percentile; inset: zoom with enlarged y-axis scale. Right: Proportion of recruited

neurons from P1 (neurons 1 to 10), P2 (neurons 11 to 20), NP (Non-Pattern, neurons 21 to 100). For both panels, all 10 simulations are

included.

https://doi.org/10.1371/journal.pcbi.1011727.g007
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stimuli remained orthogonal even when they took all the neurons of the network, which hap-

pened in the case of much longer simulations (see S3 Fig).

Assembly reinforcement and forgetting

Next, we directly tested the hypothesis illustrated in Fig 1B, namely that, after the formation of

3 similar assemblies, the one stimulated more frequently will increase its size, the one stimu-

lated less frequently will show a smaller increase, whereas the third one, not further stimulated

after its formation, will disappear. For this, in the first phase (assembly formation), 3 non-over-

lapping patterns (P1, P2 and P3; involving neurons 1 to 10, 11 to 20 and 21 to 30, respectively)

were stimulated through rectangular pulse trains given at different times and at the same

frequency (f1 ¼ f2 ¼ f3 ¼ 1

90 a:u:). In the second phase (assembly evolution), P1 and P2 were

stimulated at different frequencies (f1 ¼ 1

60 a:u ; f2 ¼
1

120 a:u:) and P3 was not further stimulated

(f3 = 0).

After the first phase, 3 distinct assemblies of equal size were formed (insets in Fig 9A; see

also the firing response and the connectivity matrix in Fig 9C and 9D at stage 1, immediately

after the formation of the assemblies). Then, during the second stimulation phase, the 3 assem-

blies reached different sizes (Fig 9A, top; see also Fig 9C and 9D at stages 2, 3 and 4). The

mean value of the synaptic weights inside P1 and P2 remained stable after the initial assembly

formation since they were repeatedly stimulated, while the ones between the neurons of P3

decreased exponentially, due to the effect of the forgetting term (Fig 9A, bottom).

It is of interest to look at the mean connections of each of the non-stimulated neurons (i.e.

neurons 31 to 100) and those of P2 (i.e. neurons 11 to 20) and P3 (i.e. neurons 21 to 30) with

P1 (i.e. neurons 1 to 10) in order to study which neurons were recruited by P1 and at which

stage of the simulations (Fig 9B, all simulations were considered). In the first stages of the sim-

ulations, non-stimulated neurons were recruited by P1, but not the neurons of P2 and P3. As

the simulations progressed, when the weight between the neurons of P3 decayed close to base-

line levels, P3 disappeared and its neurons started to be recruited by P1. In other words, once

the memory was forgotten, the neurons representing it became available to join the representa-

tion of other memories. Since P2 continued to be stimulated, the average weight between its

neurons continued to be at the same level and, consequently, none of the neurons of P2 were

recruited by the more frequently reinforced P1.

As for the previous simulations, we looked at the firing of the neurons and the connectivity

matrix at subsequent stages of the simulation (see Fig 9C for one exemplary simulation). At

stage 1, we observe the 3 non-overlapping patterns shortly after their formation. At stage 2, P3

was no longer stimulated and the corresponding clustering in the weight matrix disappeared;

besides, we observe that one of the neurons initially belonging to P3 (i.e. neuron 29) already

responded when stimulating P1. At the later stages (stage 3 and 4) we observe that P1 had

recruited more neurons of P3 and of the non-stimulated neurons, but not of P2. Note also that

in the connectivity matrix there was not an increase in the weights between P1 and P2,

Fig 8. Assembly evolution with two concurrent patterns stimulated at different frequencies. A) Number of neurons per assembly

over time. Left: The bold lines indicate the mean assembly sizes over all the repetitions (n = 10) while the background lines represent

the single repetitions. Right: The coloured squares indicate the mean+std while the circles in the background represent the single

repetitions’ results. B) Firing rates for all neurons and weight matrices at different times for a single simulation. C) Quantification of

the higher tendency of recruiting neurons with weak synaptic connections. Left: Input field distributions for: P1 (neurons 1 to 10)

while stimulating P2 (neurons 11 to 20), in purple; P2 while stimulating P1, in purple; other neurons (neurons 21 to 100; in case

recruited, trials after recruitment are excluded) while stimulating P1 or P2, in orange. For each of the two distributions, the vertical

solid line represents the mean while the dashed line corresponds to the 95th percentile; inset: zoom with enlarged y-axis scale. Right:

Proportion of recruited neurons from P1 (neurons 1 to 10), P2 (neurons 11 to 20), NP (Non-Pattern, neurons 21 to 100). For both

panels, all 10 simulations are included.

https://doi.org/10.1371/journal.pcbi.1011727.g008
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meaning that the two patterns remained separated. In line with these results, we find equal

sizes for the 3 assemblies shortly after their formation (stage 1), but different sizes between

them as the simulations progressed (ANOVA, p< 10−12; post-hoc t-tests, p< 10−11 in all

cases), with P1 increasing its size, P2 remaining approximately with the same size and P3 dis-

appearing (Fig 9D).

Scalability of the model

To speed up calculations, in the previous simulations we have used a network of N = 100 and

patterns initially having 10 neurons each. Next, we tested the robustness of our model to

changes in the network size (N) and the fraction of stimulated neurons (N�γ). In particular, we

further evaluated the network dynamics during the formation and evolution of 1 assembly for

2 different stimulation frequencies (f ¼ 1

30 a:u: and f ¼ 1

60 a:u:) and other combinations of N and

N�γ (N = 500 and N�γ = 10; N = 500 and N�γ = 50; N = 1000 and N�γ = 10; N = 1000 and N�γ =

50).

As before (see Fig 6A), for both frequencies we observe an increase of the assembly sizes

with time, which was higher for the simulations with the higher frequency of stimulation (Fig

10). We examined the assembly increase at three different stages of the simulations (Fig 10A,

bottom; Fig 10B, bottom). For both frequencies and both network sizes the increase was pro-

portionally larger for the sparser pattern, as in this case there were more neurons that could be

recruited into the pattern. There was, however, a clear difference compared to the simulation

with 100 neurons in Fig 6, which is due to the fact that in case of larger networks the assemblies

reached a relatively stable regime faster (in less than ~200,000 a.u. for N = 500, and in less than

~100,000 a.u., for N = 1000, in Fig 10 compared to about less than ~400,000 a.u. in Fig 6). This

is because increasing the number of non-stimulated neurons (i.e. N−N�γ) gives a higher proba-

bility of recruiting neurons, which results in a faster assembly evolution for our simulations

with N = 500 and N = 1000 (and in a faster assembly evolution for our simulations with

N = 1000 compared to N = 500). Nevertheless, at the plateau level the final relative assembly

sizes with N = 100, N = 500 and N = 1000 are comparable since the effect of the forgetting term

(β) and the normalization factors (SW,i(t) and SR,i(t)) does not change.

We showed the robustness of the model to changes in network size (comparing two further

network sizes N = 500 and N = 1000 to the standard network size N = 100) and to changes in

assembly size (testing both N�γ = 10 and N�γ = 50 for each of the new network sizes) (Fig 10).

Furthermore, we decided to test the robustness of our model to changes in the number of stim-

ulated assemblies. In particular, we evaluated the network dynamics within a network of

N = 1000 using a different combination of number of stimulated assemblies and N�γ (2 assem-

blies of N�γ = 10; 2 assemblies of N�γ = 20; 10 assemblies of N�γ = 10; 10 assemblies of N�γ = 20;

20 assemblies of N�γ = 10; 20 assemblies of N�γ = 20;), for 2 different stimulation frequencies

(f1 ¼ 1

600 a:u: and f2 ¼ 1

1200 a:u:). In each simulation, half of the assemblies were stimulated with

f1 ¼ 1

600 a:u: and the other half with f2 ¼ 1

1200 a:u:. It can be noticed that the frequencies adopted

Fig 9. Assembly reinforcement and forgetting. A) Number of neurons per assembly and mean synaptic weight over

time. The bold lines indicate the mean over all the repetitions (n = 10) while the background lines represent the single

repetitions. B) Mean connections with P1 (neurons 1 to 10) (All simulations). Top: for each of the non-stimulated

neurons (neurons 31 to 100), the average of its connections with P1 is shown. Middle: for each of the P3 neurons

(neurons 21 to 30), the average of its connections with P1 is displayed. Bottom: for each of the P2 neurons (neurons 11

to 20), the average of its connections with P1 is shown. C) Firing rates and weight matrices for all neurons at different

times for a single simulation. The times 1 to 4 correspond to the times considered in the above panel. D) Number of

neurons per assembly at different times. The coloured squares indicate the mean+std while the grey circles in the

background show the single repetitions’ results.

https://doi.org/10.1371/journal.pcbi.1011727.g009
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Fig 10. Assembly evolution with larger networks. A) Relative assembly size over time within a network of 500

neurons for different numbers of stimulated neurons (N = 500 and N�γ = 10; N = 500 and N�γ = 50), and for 2 different

stimulation frequencies. The relative size (RS) at time m is calculated as RSm ¼
SIZEm
N�g . Bottom: relative assembly size at

different times for each of the 2 frequencies and each of the 2 stimulated pattern sizes. B) Relative assembly size over

time within a network of 1000 neurons for different numbers of stimulated neurons (N = 1000 and N�γ = 10; N = 1000
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here (f1 ¼ 1

600 a:u: and f2 ¼ 1

1200 a:u:) were lower than the frequencies used throughout the rest of

the work (f ¼ 1

30 a:u: ; f ¼ 1

40 a:u: ; f ¼ 1

60 a:u: ; f ¼ 1

90 a:u: ; f ¼ 1

120 a:u:;). The reason is that, when

stimulating a larger number of assemblies at different times, the stimulation frequencies need

to be lower in order to avoid temporal overlaps between consecutive simulations of different

assemblies. Consequently, the forgetting term needs to be adjusted, as discussed in Methods.

In all the simulations with N = 1000 and with different combinations of number of assem-

blies and N�γ, we found qualitatively similar results compared to the findings previously

shown (Figs 11 and S4). Specifically, we again found that: i) assemblies stimulated with the

same frequency increase their sizes similarly, while the sizes of assemblies stimulated with dif-

ferent frequencies evolve significantly differently (Fig 11; t-test); ii) the stimulated assemblies

change their sizes recruiting different neurons, thus there was no overlap of neurons between

different assemblies (i.e. the different assemblies remained orthogonal) (S4 Fig).

Discussion

Our memories are constantly changing. They are created, consolidated into long-term repre-

sentations and sometimes forgotten. In contrast to these dynamical memory processes, stan-

dard attractor neural networks are static, in the sense that memories are stored as specific

patterns of network activations that remain the same [22]. Furthermore, in attractor neural

networks, memories correspond to fixed points and, once a memory is reached, the network

stays there forever, whereas in real life we tend to go from one memory to another. To tackle

these issues, we here proposed a “dynamic memory model” by implementing a biologically-

plausible online Hebbian learning rule in a rate attractor neural network model. To avoid that

the network remains permanently in a fixed point, we also added an adaptation mechanism, as

in previous works [38,41–44], with which, after the offset of the stimulus presentation, the net-

work went down to baseline.

Rate attractor models with online learning have previously been studied in order to investi-

gate several aspects of the learning dynamics [26–32]. Specifically, earlier studies [26–30]

aimed at characterizing the network storage capacity when distinct patterns are stored at sub-

sequent times. More recent studies [31,32] have proposed a method for inferring learning

rules from in vivo data and implementing those rules in firing rate models generating attractor

dynamics. However, in all those studies the evolution of memory representations with stimu-

lus repetitions was not investigated. In contrast to these works, our primary goal was to repli-

cate the dynamics of memory processes (formation, reinforcement and forgetting). For this,

we have: i) used an explicit learning rule acting continuously on the network connectivity; ii)

examined the effects of presenting patterns at different frequencies; iii) considered the role of

background activity in shaping long-term memory representations.

Since recurrent networks with synapses regulated by Hebbian learning become unstable

[47,48], several works using attractor neural networks with spiking neurons have implemented

compensatory mechanisms [35–37], based on heterosynaptic plasticity occurring on synapses

connecting neurons that are not activated, in parallel to Hebbian plasticity (which happens

instead on synapses connecting co-activated neurons) [49–51]. In our work, we further limited

the runaway dynamics of Hebbian learning through two mechanisms of normalization of the

input. One mechanism (synaptic normalization) decreased the synaptic efficacy when the

postsynaptic neurons built strong positive connections. The other mechanism (divisive

and N�γ = 50), and for 2 different stimulation frequencies. The relative size (RS) at time m is calculated as RSm ¼
SIZEm
N�g .

Bottom: relative assembly size at different times for each of the 2 frequencies and each of the 2 stimulated pattern sizes.

https://doi.org/10.1371/journal.pcbi.1011727.g010

PLOS COMPUTATIONAL BIOLOGY A dynamic attractor network model of memory coding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011727 December 20, 2023 19 / 32

https://doi.org/10.1371/journal.pcbi.1011727.g010
https://doi.org/10.1371/journal.pcbi.1011727


PLOS COMPUTATIONAL BIOLOGY A dynamic attractor network model of memory coding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011727 December 20, 2023 20 / 32

https://doi.org/10.1371/journal.pcbi.1011727


normalization) modulated the input received by the postsynaptic neurons according to the

mean activity of the network. In our model these two compensatory processes exerted two dis-

tinct functional roles in memory coding. The divisive normalization promoted sparseness of

the neural coding (i.e. the information tended to be represented by a limited subset of neurons

of the network), in line with the high sparseness of human MTL neurons [52,53]. Then, the

synaptic normalization prevented neurons that were already part of an assembly from

responding by chance to other stimuli, thus avoiding interference between the assemblies.

Our main working hypothesis was that the size of an assembly representing a memory

dynamically changed according to the frequency of presentation of the pattern corresponding

to that memory, due to the interplay of Hebbian learning and background firing activity. In

line with this, we showed that the chance of reinforcing the connections between neurons of

an assembly and other neurons significantly increased with the frequency of stimulation of the

corresponding memory pattern–i.e. the higher the stimulation frequency, the higher the

assembly size reached at the end of the stimulation. In particular, we found that the repeated

presentation of a pattern lead, first, to the formation of an assembly representing it and, then,

to its reinforcement, by increasing the number of assembly neurons, if the frequency of pre-

sentation was large enough, or its forgetting, if the frequency was too low. This way, we could

study how the size of a memory representation was linked to the familiarity of the stimulus, in

line with behavioural results showing a clear link between memory performance and familiar-

ity [18–20], fMRI results showing that the presentation of personally relevant visual stimuli

generates stronger hippocampal activation than less relevant stimuli [17], and results obtained

with direct single neuron recordings in the human hippocampus showing that more neurons

tend to represent familiar, personally relevant items [16]. In line with these results one could

expect that the repeated presentation of novel stimuli (the face of an initially unknown person)

would create an increasingly larger neuronal representation, which, due to the very sparse

sampling of human hippocampal neurons allowed by current recordings, would give an

increasing tendency to find single neuron responses, the more the stimulus is presented. Our

results show the role of synaptic normalization in reducing the firing of the neurons that are

already recruited into an assembly, thus decreasing the probability to be recruited by other

assemblies and keeping assemblies orthogonal. Based on this result, we can propose two exper-

imental predictions: i) neurons with low firing rates are already part of consolidated memory

assemblies and are therefore less likely to respond to novel stimuli (i.e. novel stimuli will tend

to recruit neurons with relatively high firing rates); ii) the neurons that start firing to novel sti-

muli should decrease their baseline firing rates with the repeated presentation of the stimuli. It

should also be noted that in our simulations the reinforcement of the assemblies was obtained

by the repeated presentation of the corresponding patterns. However, it is conceivable that

such reinforcement can not only be created by external stimulation but also by internal pro-

cesses, given by a stochastic reactivation of the memory patterns [54,55,56], a process that is

particularly prominent during sleep [57,58].

We also showed that, when multiple non-overlapping assemblies were regularly stimulated,

they did not interfere with each other. In fact, if stimulated at the same rate, none of the

Fig 11. Assembly evolution for different stimulation frequencies in larger networks with different number of

assemblies and number of stimulated neurons. A-B-C-D-E-F) Relative assembly size over time within a network of

1000 neurons for: A) 2 assemblies of 10 stimulated neurons (N�γ = 10); B) 2 assemblies of 20 stimulated neurons; C) 10

assemblies of 10 stimulated neurons; D) 10 assemblies of 20 stimulated neurons; E) 20 assemblies of 10 stimulated

neurons; F) 20 assemblies of 20 stimulated neurons. The bold lines indicate the mean over all the assemblies stimulated

at the same frequency while the background lines represent the single assembly sizes. Right: Assembly size for each of

the two frequencies at t = 350000 a.u. The bold squares indicate the mean+std across the assemblies stimulated at the

same frequency while the squares in the background represent the single assemblies’ results. (Parameters: β =

0.000125.).

https://doi.org/10.1371/journal.pcbi.1011727.g011
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assemblies outweighed the other and they evolved independently–i.e. without taking neurons

from each other and recruiting neurons not belonging to any assembly. In other words, the

presence of two or more patterns in a network did not lead to a ‘winner takes all’ dynamics, in

which one of the assemblies outweighed the other one, or overlapping representations, with

neurons being part of more than one pattern, thus generating sparse representations, as found

in human MTL recordings [52,53].

Memory relies on the coding of associations—for example, to remember meeting a particu-

lar person in a particular place—a process that involves the hippocampus [15,59,60]. Based on

results obtained with single cell recordings in the human hippocampus, namely, that if a neu-

ron responds to two or more concepts, these concepts tend to be associated [61–63], we sug-

gested that in this area associations are encoded via partial overlaps between the assemblies

representing the concepts involved [15,53]. In a previous modelling study [38], we have shown

that such partial overlaps are efficient to encode and retrieve associations. This model assumes

neglectable amounts of overlaps between non-associated items and it is therefore important

that non-associated items (as the ones in this study) form non-overlapping representations, or

otherwise, overlaps that may have been created by chance would be erroneously interpreted as

encoding meaningful associations. Future studies may show how overlaps between assemblies

representing associations might be created by showing patterns together, but not too often, or

otherwise the patterns will have a large overlap that will merge them into a single fixed point

[38]. We should also mention that an alternative (and not mutually exclusive) model for

enlarging familiar assemblies is that, via partial overlaps, the assembly representing a concept

that is experienced in different contexts may incorporate neurons representing these contexts,

given that the context where a concept is experienced (i.e. a particular place) is another con-

cept with a corresponding assembly.

Finally, we have implemented a forgetting mechanism as an ongoing weakening of the syn-

apses’ strength which continuously competes with the synapses’ potentiation [2,8,45,46]. Due

to this forgetting mechanism, assemblies representing memories that are no longer presented

end up disappearing. Moreover, we showed that, once an assembly disappeared due to lack of

stimulation, its neurons became available to be recruited by other (further stimulated) memo-

ries, becoming part of their corresponding assemblies. This increases the coding flexibility of

the system, forgetting old memories that are no longer relevant, in favour of others that are

revisited more frequently and become more relevant.

Methods

Standard attractor model

The starting point for the construction of the dynamic attractor model was a standard attractor

neural network with static connections within the network, pre-defined according to the

memories to be encoded and stored as unipolar binary patterns (x
w

i 2 f0; 1g, for all neurons i).
The model was built as an attractor neural network of N rate neurons whose dynamics is

described by:

tr
dri
dt
¼ � ri tð Þ þ r0 þ � hi tð Þð Þ ð1Þ

where ri(t) is the firing rate of a neuron i, τr is the neural activation time-constant, r0 is the baseline

firing rate, ϕ is a sigmoidal transfer function and hi(t) is the input field to the neuron i.
The input field is defined as:

hiðtÞ ¼
XN

i6¼j
wijðtÞrjðtÞ þ IiðtÞ ð2Þ
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where Ii(t) is the external input to the neuron i and wij(t) is the value of the connection going

from neuron j to neuron i.
The frequency-current (f-I) curve is a sigmoidal function:

� hið Þ ¼
rmax

1þ e� bðhi � h0Þ
ð3Þ

where h0 is the threshold parameter, b the slope parameter and rmax the maximal firing rate

(rmax = 1).

Dynamic attractor model

To the standard model described in the previous section we added: i) a neural adaptation

mechanism, giving a decay of the activations after the removal of external stimulation (other-

wise, the stimulated pattern would stay forever active); ii) Gaussian noise simulating ongoing

background activity; iii) an online Hebbian learning rule, to dynamically update the synapses;

iv) a relatively slow forgetting mechanism, to introduce an exponential decay of synaptic effi-

cacies; v) compensatory mechanisms in order to avoid runaway dynamics.

Neural adaptation

In attractor networks, if the network state r! is driven to one stored memory χ (e.g. through

the external input I!), all the neurons that participate in that memory χ will remain active

after the removal of the external input I!. However, in a biologically plausible scenario, memo-

ries are continuously changing. Therefore, to avoid having the network being “stuck” in the

attractor state after the stimulus offset, an adaptation mechanism [42] was implemented by

defining, for each neuron i, an activity-dependent firing threshold θi(t) [41,43,44].

The dynamics of the firing threshold evolves as:

ty
dyi
dt
¼ � yi tð Þ þ y0 þ Dyri tð Þ ð4Þ

where θi(t) is the firing threshold of a neuron i, τθ is the adaptation time-constant, θ0 is the

base threshold in the absence of firing and Dθ is a constant that determines the strength of the

adaptation.

The adaptive threshold θ(t) is inserted into Eq 3 as:

� hi; yið Þ ¼
rmax

1þ eð� b½hiðtÞ� yiðtÞ�Þ
ð5Þ

where θi(t) is a moving threshold.

Background activity

Part of the input arises from background activity which we assume to be normally distributed.

The dynamics of each neuron i is defined as:

tr
dri
dt
¼ � ri tð Þ þ r0 þ � hiðtÞ; yiðtÞð Þ þ C � xi tð Þ ð6Þ

where C is the coupling constant of the Gaussian noise, and ξi(t) is the noise value sampled

from a Gaussian distribution of mean μ = 0 and standard deviation σ = 1. We note that, for

simulation purposes, C contains a factor
ffiffiffi
Dt
tr

q
where Δt is the timestep.
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Online Hebbian-like learning rule

We implemented a Hebbian-like learning rule [32], in which the dynamics of the synaptic con-

nections is described by:

tw
dwij

dt
¼ Z ri� < ri >ð Þ rj� < rj >

� �
ð7Þ

where wij is the value of the connection going from neuron j to neuron i, the constant η is the

learning rate and τw is the learning time-constant. The term<ri> indicates the running aver-

age of the firing rate of neuron i over a box-shaped time window of fixed length TLR. The syn-

aptic weights wij have hard bounds at [wmin, wmax], as in previous works [37,64,65,66].

Forgetting mechanism

A learning rule as in Eq (7), during uncontrolled spontaneous activity, induces a random walk

of the synaptic weights over time, in which the connection matrix has a stable average around

0, but its standard deviation keeps increasing. To stabilize the network, we introduced a “for-

getting term” to the Hebbian-like learning rule, which is in line with forgetting mechanisms

described in experimental psychology [45,46] and similar to synaptic decay implementations

introduced in previous works [54],:

tw
dwij

dt
¼ Z ri� < ri >ð Þ rj� < rj >

� �
� bwij ð8Þ

where the constant β regulates the timescale of forgetting.

Compensatory mechanisms

Synaptic normalization. Hebbian plasticity, through long term potentiation (LTP), acts

as a positive feedback mechanism: the potentiated synapses make the postsynaptic neurons

more likely to fire and, consequently, those synapses are further strengthened. To counterbal-

ance this effect, different forms of negative feedback mechanisms have been proposed and

studied in the last decades [50,67]. In this regard, it has been proposed theoretically [68] and

then shown experimentally with neurons of the primary visual cortex [51] that Hebbian poten-

tiation of specific synapses is accompanied by weakening of their adjacent synapses by hetero-

synaptic plasticity.

In line with previous works [69], we introduced in our model a term that takes into account

an input normalization depending on the summed weight of all strong connections. For each

neuron i, this term is defined as:

SW;i tð Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ aw
PN

i6¼jðwijðtÞHðwijðtÞ � wthrÞÞ

q ð9Þ

where αw determines the strength of the scaling, H is the Heaviside function and wthr ¼
wmax

6
.

Divisive normalization. It has been proposed that a neuronal response is given by the

ratio between the driving input from other neurons and a normalization signal proportional to

the summed activity of the neuronal population [70,71]. This kind of normalization allows

adjusting the neuron’s dynamic range to changes in the input range [72], which is critical

when the input range can vary substantially. In our work, since we plan to model the change of

the sizes of neuronal assemblies, the neurons of these assemblies are subject to large changes in

their recurrent inputs.
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For this reason, we introduced in the model a term that takes into account an input normal-

ization based on the mean network activity. For each neuron i, this term is defined as:

SR;i tð Þ ¼
1

1þ
ar
gN

PN
i6¼j rjðtÞ

ð10Þ

where αr determines the strength of the normalization, N is the size of the network and γ is the

network sparseness defined as the fraction of directly stimulated neurons.

Introducing SW,i(t) and SR,i(t), the input field hi(t) for a neuron i is defined as:

hiðtÞ ¼ SR;iðtÞSW;iðtÞð
XN

i6¼j
wijðtÞrjðtÞ þ IiðtÞÞ ð11Þ

The choice of αw and αr (together with the choice of noise level, learning and forgetting

rates and stimulation frequency) determines the maximum size that an assembly can reach

(see S1, S2 and S3 Figs to observe which maximum size an assembly can reach in different con-

ditions). Specifically, the more an assembly grows the more SR,i(t) prevents other neurons to

join it, while SW,i(t) tends to contrast the assembly activation. Using a high value for αr could

produce a rebound activation of the stimulated assembly, while using a high value for αw may

lead the stimulated assembly to die out when reaching a certain size. In our work, we limited

these possible effects of the normalization factors SR,i(t) and SW,i(t) while successfully limiting

the runaway dynamics of Hebbian learning (see S1 Text for further considerations about this).

All the mechanisms used to stabilize the system (namely: hard bounds of the synaptic

weights, weight decay, divisive normalization and synaptic normalization) were necessary for

the functional behaviour of our model (see S5 Fig).

Parameter choices

The model has several parameters, whose values are the ones depicted in Table 1 (unless speci-

fied otherwise), and it involves 6 different timescales:

Table 1. Network parameters.

Parameter Description Value

rmax Maximal firing rate 1

r0 Baseline firing rate 0

b Slope parameter of the sigmoidal transfer function 100

θ0 Base firing threshold in the absence of firing 0.15

Dθ Constant determining the adaptation strength 1

C Constant of the Gaussian noise 0.006

μ Mean of the Gaussian noise 0

σ Standard deviation of the Gaussian noise 1

η Learning rate 1

β Forgetting rate 0.0025

αw Synaptic normalization constant 1

αr Divisive normalization constant 2

wmax Maximal synaptic weight 0.3

wmin Minimal synaptic weight -0.05

γ Fraction of directly stimulated neurons 0.1

N Network size 100

I0 Intensity of the external stimulation 1

https://doi.org/10.1371/journal.pcbi.1011727.t001
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i. τr = 1 arbitrary unit (a.u.) is the timescale determining the neuronal activation;

ii. T = 5 a.u. is the duration of the external stimulation;

iii. τθ = 7 a.u. is the neural adaptation time constant. It is slower than τr so that a neuron is

switched off only after having enough time to be activated;

iv. TLR is the length of the window adopted for calculating the learning rule’s running average.

The standard value is TLR = 15 a.u. which was chosen to be longer than the stimulus dura-

tion T;

v. 1

fmax
¼ 30 a:u: is the period corresponding to the maximum stimulation frequency. It was

chosen to avoid temporal overlaps between consecutive stimulations;

vi. τw = 50 a.u. is the timescale determining the learning.

Experimental paradigms

We ran different simulations to show memory formation, reinforcement and forgetting in a

recurrent attractor network.

For all paradigms: i) we used a rectangular pulse train stimulation with a current of dura-

tion T = 5 a.u. and intensity I0 = 1; ii) we waited for 50000 a.u. to give the network enough

time to reach a stable standard deviation of its synaptic weights before starting the stimulation;

iii) all connections and rates were initially set to 0; iv) in all cases, following the stimulation

phase, there was a post-stimulation phase lasting 10000 a.u., which was used to monitor the fir-

ing activity of the network in the post-stimulation period and to characterize the change of the

synaptic weights in absence of any further stimulation; v) in all the plots t = 0 corresponds to

the start of the stimulation phase.

Furthermore, to quantify the formation and evolution of the assemblies, the network prop-

erties at different points of the stimulations were tested using brief stimulation pulses (I0 = 1

and T = 1 a.u.), while switching off the learning rule and the noise (i.e. in the next iteration the

simulation continues as if the test input was not applied), so that the different test pulses would

not interfere with the evolution of the simulations. A neuron i was considered to be activated

by the test stimulus if ri>0.5 at t>2 a.u. after the presentation of the stimulus.

Scalability of the model

We built our model using a small network of N = 100 neurons and assemblies representing

memory patterns with initial size of 10 neurons (and, thus, a sparseness γ = 0.1). However, our

system can be used with different network sizes and values of γ, with some adjustments

detailed below.

If N is increased but N � γ (i.e. the size of the assemblies during initial stimulation) is fixed,

the parameters adopted throughout this work give qualitatively similar results.

If N � γ is varied, some parameters needs to be adjusted due to the following considerations:

i. The fraction of directly stimulated neurons changes. Consequently, the recurrent input of

an assembly neuron from the rest of the assembly varies. To compensate a change from N �
γ to N’ � γ’, wmax (i.e. the maximum strength of the connections within the assembly) needs

to be adjusted to a value wmax
0 ¼ N�g

N0 �g0 � wmax, where wmax, N and γ are the values reported in

Table 1.

ii. There is a change in the minimal value of the mean connection from a non-stimulated to a

stimulated neuron that has to be reached in order to recruit the non-stimulated neuron
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into the assembly. In order to compensate a change from N � γ to N’ � γ’, C needs to be

adjusted to a value C0 ¼ N�g
N0 �g0 � C, where C, N and γ are the values reported in Table 1.

We tested the robustness of our model using four different combinations of N and N � γ:

N = 500 and N � γ = 10; N = 500 and N � γ = 50; N = 1000 and N � γ = 10; N = 1000 and N � γ =

50.

It should be noted that, in case the number of assemblies alternatively stimulated is

changed, the stimulation frequencies used should also change in order to avoid stimulating dif-

ferent assemblies at the same time. Consequently, the forgetting rate β might have to be

adjusted for an effect in the change of assembly sizes upon stimulation frequency to be

observed.

We tested the robustness of our model using six different combinations of “number of

assemblies” and N � γ in networks of N = 1000: i) 2 assemblies with N � γ = 10; ii) 2 assemblies

with N � γ = 20; iii) 10 assemblies with N � γ = 10; iv) 10 assemblies with N � γ = 20; v) 20 assem-

blies with N � γ = 10; vi) 20 assemblies with N � γ = 20. Since the maximum “number of assem-

blies” tested across these simulations was 20 and the minimum distance between consecutive

stimulations to avoid temporal overlaps was 30 a.u. (see the previous section “Parameter

choices”), we used f1 ¼ 1

600 a:u: as the highest frequency. Given the use of lower frequencies com-

pared to the rest of the work, we used b
0
¼ b=20

, where β is the forgetting rate indicated in

Table 1.

Supporting information

S1 Text. Supplementary text for “A dynamic attractor network model of memory forma-

tion, reinforcement and forgetting”.

(PDF)

S1 Fig. Assembly evolution upon stimulus repetition until convergence. Starting at time 0 a.

u., 10 neurons were stimulated for 70000 times with f = 1/(60 a.u.). Bottom: Number of assem-

bly neurons over time. Inset, top left: zoom with enlarged time scale. Top, right: firing rate for

all neurons at the time of the 70000th stimulation (the 10 directly stimulated neurons are on

top).

(TIF)

S2 Fig. Firing rate for all neurons and weight matrix at the time of the 100000th stimula-

tion. Starting at time 0 a.u., 10 neurons were stimulated for 100000 times with f = 1/(30 a.u.).

The firing rate plot and the weight matrix show that almost all the network had been recruited

into one assembly after 100000 stimulations.

(TIF)

S3 Fig. Assembly evolution with two concurrent patterns stimulated at the same frequency

until convergence. Starting at time 0 a.u., two non-overlapping populations of 10 neurons

each were stimulated at different times with f = 1/(60 a.u.) for 70000 times. Bottom: number of

neurons per assembly over time. Inset, top left: zoom with enlarged time scale. Top, right:

weight matrix at the end of the stimulation paradigm.

(TIF)

S4 Fig. Connections among stimulated assemblies within networks of N = 1000 with differ-

ent combinations of number of assemblies and number of stimulated neurons.

A-B-C-D-E-F) Connectivity, at t = 350000 a.u., among stimulated assemblies within networks

of 1000 neurons, in case of different number of assemblies and number of stimulated neurons,

namely: A) 2 assemblies of 10 stimulated neurons (N � γ = 10); B) 2 assemblies of 20 stimulated
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neurons; C) 10 assemblies of 10 stimulated neurons; D) 10 assemblies of 20 stimulated neu-

rons; E) 20 assemblies of 10 stimulated neurons; F) 20 assemblies of 20 stimulated neurons. In

each simulation, two stimulation frequencies (f1 = 1/(600 a.u.) and f2 = 1/(1200 a.u.)) were

used, with half of the assemblies stimulated with f1 and half of the assemblies stimulated with

f2. For better visualization, only connections in one direction are shown (however, reciprocal

connections have the same value). Connections among the non-stimulated neurons are not

shown. In none of the simulations we observed the formation of overlaps between different

assemblies. (Parameters: β = 0.000125.).

(TIF)

S5 Fig. Model behaviour following selective removal of its stability mechanisms. A) Model

without hard bounds of the synaptic weights. A specific population of 10 neurons was stimu-

lated repeatedly at a repetition frequency f ¼ 1

30 a:u:. The mean weight of the network increased

without limit until the stimulated neurons would not return to baseline activation after the

end of the external stimulation. The weight successively decreased, due to forgetting and due

to the fact that sustained co-activation for longer than TLR (i.e. length of the window adopted

for calculating the learning rule’s running average; see Table 1 in the main text) does not result

in learning (see Eq 8 in the main text). B) Model without weight decay. The mean and standard

deviation of all network connections in absence of any external stimulation are displayed in

the case of model without forgetting. Without forgetting, the standard deviation kept increas-

ing, even if the other stability mechanisms were implemented. (Parameters: β = 0). C) Model

without synaptic normalization: A specific population of 10 neurons was stimulated repeatedly

at a repetition frequency f ¼ 1

30 a:u:. The firing rates for all network neurons at different times

are displayed. In absence of synaptic normalization, the formation of new connections with

new recruited neurons lead to more prolonged assembly activation, eventually leading to

uncontrolled network activity. (Parameters: αw = 0; αr = 2). D) Model without divisive normal-

ization. A specific population of 10 neurons was stimulated repeatedly at a repetition fre-

quency f ¼ 1

30 a:u:. The firing rates for all network neurons are displayed, showing that, in

absence of divisive normalization, the formation of new connections with new recruited neu-

rons lead to uncontrolled network activity. (Parameters: αw = 2; αr = 0).

(TIF)

S6 Fig. Comparison of assembly evolution for patterns stimulated with the same frequency

in different experimental paradigms. A) Number of neurons per assembly over time in case

of “Single-pattern networks”, “Network with 2 patterns and 1 frequency”, “Networks with 2

patterns and 2 frequencies”. B) Number of neurons per assembly at different times for each of

two stimulation frequencies (f ¼ 1

60 a:u:;¼
1

120 a:u:) in three different experimental paradigms. It

should be noted that the assemblies’ names “P1” and “P2” correspond, for each paradigm, to

the ones used in the figures of the main text (Figs 6A, 7A and 8A).

(TIF)
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69. Demšar J., Forsyth R. Synaptic scaling improves the stability of neural mass models capable of simulat-

ing brain plasticity. Neural Computation, 2020 32(2):424–446. https://doi.org/10.1162/neco_a_01257

PMID: 31835005

70. Carandini M., Heeger D.J. Normalization as a canonical neural computation. Nature Reviews Neurosci-

ence, 2011 13(1):51–62. https://doi.org/10.1038/nrn3136 PMID: 22108672
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