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ABSTRACT 
 

Cardiovascular diseases (CVDs) are among the world’s widely affected disorders, including 
ischemia and stroke. Acute Myocardial ischemia (AMI) is a deadly disease caused by irreversible 
damage to the left ventricular heart tissues.  The thromboembolic plaque stops the oxygen supply 
to the main blood vessels and ventricles. During chronic inflammation, myocardial infarction and 
free radicals damage stable myocardium, smooth muscles cell, and epithelial cells caused by outer 
membrane loss and ventricular wall smoothing and dilation. Specially constructed scaffolds made 
of biological and nanoparticles have been created to shield the left ventricle from further injury and 
recover ischemic endothelial cells. Preclinical experiments have demonstrated that scaffolds 
containing growth factors and cells will regenerate ischemic tissue into a stable pericardium in good 
working order. Various medicinal approaches that treat cardiovascular disease conditions at 
different stages are discussed in this review article, with biomaterials receiving special attention. 
This review further addresses the manipulation and manufacturing of biomedical implantable 
devices using nanomedicine methods and drug delivery principles. The use of graphene and 
exosomal nanovesicle in cardiovascular therapeutics recently progressed in research studies. 
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1. INTRODUCTION 
 
Cardiovascular disorders (CVDs) damage the 
heart and blood vessels. It encompasses both 
circulatory and respiratory system disorders, 
including peripheral artery disease. In the United 
States, Coronary heart disease and stroke are 
two of the most common causes of death. 
Cardiovascular disorders are one of the leading 
causes of disease worldwide, according to the 
World Health Organization (WHO) [1-2]. As a 
result, more successful therapies for CVDs are 
needed. Nanotechnology, described as the study 
of materials at the atomic, molecular, and 
supramolecular levels, has shown promise in the 
field of CVDs. Nanotechnology is known as the 
application of nanotechnology to biological 
structures to prevent, identify, heal, or restore 
injured cells [3-7]. It is becoming increasingly 
important in the treatment of cardiovascular 
diseases. Nanoparticles, or nanometric particles, 
have shown significant promise in various 
cardiovascular applications [8-10]. Nanoparticles 
are mobile in intravascular and extravascular 
environments. It is suitable for delivering 
therapeutics and imaging agents to particular 
sites. Because of their unusual multi-
functionality, it has demonstrated considerable 
potential and provided a medium for targeted 
drug delivery [11]. Nano-coatings are 
nanotechnology developments that improve the 
bioavailability of surgical devices and their 
integration with the surrounding tissues. This 
technique can be used in orthodontic treatment, 
cardiac stent coating, and orthopedic joint repair 
implants [12, 13]. 
 

2. ATHEROSCLEROSIS LEADS TO 
CARDIOVASCULAR DISEASE 

 
Marchand first used atherosclerosis to describe 
the association of fatty degeneration and arterial 
stiffness [14] and was characterized by 
subintima's patch intramural thickening. Fatty 
streaks cause clinical events causes unstable 
and fibrous plaques. 
 
Atheroma’s, patchy intimal plaques are signs of 
atherosclerosis. The lumen of medium and large-
sized arteries is the most prevalent site. 

Furthermore, the inflammatory and smooth 
muscle cells (MSCs), fibrous connective tissue, 
and a fat component of lipids make plaque 
cellular components. Hypertenson, diabetes, 
dyslipidemia, obesity, sedentary living, family 
history, and smoking are all significant risk 
factors that need to be considered beforehand 
while treating CVD patients. Symptoms can be 
caused by intraplaque rupture, haemorrhage, 
thrombosis, or stenosis [15, 16]. Clinical 
diagnosis and imaging studies were used to 
confirm. Medications employed to treat 
cardiovascular disorders are antiplatelet 
pharmaceuticals and antiatherogenic drugs. 
Furthermore, the management strategy includes 
behavioural changes like a low-calorie diet and 
regular physical activity.  
 
It is the primary cause of illness and death in the 
United States and the Western world. 
Cardiovascular disease (CVD) is still the lead 
mortality in the modern world and claimed the 
lives of 17 million people in 2008. However, more 
than 3 million fatalities occurred in persons under 
60 years [17]. Further, in addition to this, there 
are rising disparities in the prevalence and 
outcome of CVD in socioeconomic classes. 
 

2.1 Pathophysiology of Atherosclerosis 
 
Atherosclerosis is a long-term inflammatory 
condition. The fatty streak causes aggregation of 
lipid-laden foam cells in the intimal lafigyer of the 
artery and characterizes it as the first sign of 
atherosclerosis [18]. During, initial stages of 
atherosclerosis, lipid retention causes persistent 
inflammation around arteries walls, resulting in 
fatty streaks, which eventually proceed to fibrous 
fibroatheromas [19, 20]. 
 
Atherosclerosis is a disease that progresses over 
time. Fatty streaks appear nearly 11-12 years of 
age, and fibrous plaques appear around 15-30 
years. Fig. 1 illustrates the development of the 
Fibrous plaque from fatty streaks [21]. The fatty 
streaks appear at the exact anatomic locations, 
indicating fibrous plaques. Further, in addition to 
this, the intimal thickening causes fatty streaks 
and fibrous cap atheromas and eventually abrupt 
cardiac death [22, 23]. 

 
 
 
 
 
 

Fig. 1. Fibrous plaques develop from fatty streaks 
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Fatty streaks develop into atherosclerotic 
plaques and are made up of three parts; 
inflammatory cells, smooth muscle cells, a 
fibrous component of connective tissue, and a 
lipid fat component [24]. The triggering factor is 
endothelial injury. Endothelial dysfunction is 
caused by turbulent blood flow, which limits the 
synthesis of NO, a potent vasodilator, and 
promotes the creation of adhesion molecules, 
attracting inflammatory cells. Further, the 
Monocytes and T cells attach to endothelial cells 
and move to the subendothelial area. LDL and 
VLDL, two lipids found in the blood, attach to 
endothelial cells and oxidize in the 
subendothelial region (Fig. 2). Monocytes 
consume oxidized LDL and convert to foam cells 
in the subendothelial area. This is the initial step, 
causes fatty streak formation. Next, smooth 
muscle cells are recruited by proinflammatory 
cytokines and produced by macrophages. After 
this, the multiplication of smooth muscle cells 
occurs, which increases and thickens the 
extracellular matrix. The outcome is a 
subendothelial fibrous plaque (Fig. 2- 4) with a 
lipid core surrounded by smooth muscle cells 
and connective tissue fibers [25]. 
 
The arterial layers, intima, and media are the 
substantial steps all involved in the study. Finally, 
adventitia is mentioned in the media, causing 
core lesions in arterial walls. An inflammatory 
reaction encircles a cholesterol-rich lipid core. 
Therefore, lipid buildup and inflammation are 
present in every lesson. Plaque increases arterial 
lumen diameter, distorts media/adventitia, and 
shrinks simultaneously. Vasa Vasorum is a new 
species that has invaded Vasa Vasorum and 
hemorrhage within the artery wall, caused by sick 
intima. Increased fibrous tissue and intramural 
bleeding caused thrombosis splitting, and healing 
occurs during the formation of thin fibrous caps. 
Clinically silent ruptures and repair cyclically 
result in many layers of recovered tissue and 
unexpected cardiac death. Finally, the calcium 
deposits as tiny aggregates in the wall and 
subsequently transform into prominent nodules. 
Thrombosis is caused by endothelial erosion, 
and increased plaque mass results in stenosis, 
leading to fatal ischemia [26]. 
 
Plaques are classified as either stable or 
unstable [27]. Stable plaques are regressed, 
remain static, and develop slowly. Further, the 
erosions, fissures, and tissue ruptures 
complicate the unstable plaques, resulting in 
stenosis, thrombosis, and infarction. Activated 
macrophages release enzymes that cause 

plaques to break. Further, the plaque contents 
are revealed during thrombosis is the 
consequence of blood clotting in the circulation. 
The thrombosis that occurs due to this alters the 
plaque form, obstructs the lumen, and embolizes 
arteries. In addition to this, the fibrous 
composition of low-risk plaques is higher and 
unstable. They contain low lipids and do not 
induce 100% blockage, and plaques become 
dense. The fibrous top is thin, with a small lumen 
of 50%, and has an unexpectedly rupturing 
tendency [28-32]. 
 

 
 

Fig. 2. Stages of Atherosclerosis 
 

3. STRATEGIES FOR BIOMATERIALS 
 
The advent of next-generation nanomaterials has 
revolutionized cardiovascular therapies at the 
preclinical stage, going to treat vascular ischemia 
as well as coronary artery stenosis. About 
125,000 surgical devices were made at the 
molecular level and tested during clinical trials 
[33]. Physical interactions in the physiological 
environment can differ significantly based on the 
bioresorbable polymer's chemistry. Various 
polyesters, such as poly-(lactic acid), poly-(lactic-
co-glycolic acid), and poly-(tyrosine)-derived 
polycarbonates, have been approved by the 
Food and Drug Administration for use in the 
manufacture of vascular scaffolds [34]. 
Thrombus clotting is the main coronary artery. A 
significant activation step contributes to 
pathological disorders such as hypoxia, CM 
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necrosis, left ventricular wall thinning, and 
cardiac remodeling. Thus, in turn, it results in an 
asthma attack or a heart attack in chronic 
patients. Furthermore, applying the patch from 
xenogeneic origin may result in an extreme 
inflammatory response; the immune system then 
rejects the reaction [35]. Earlier, Stainless steel, 
titanium alloys, and cobalt-chromium alloys 
dominated the first wave of cardiovascular 
materials. As a result, synthetic polymers such 
as polyesters, polyurethanes, polyamides, and 
poly tetra fluoroethylenes have progressively 
replaced metal alloys over time. Novel polymers 
for cardiovascular applications are increasingly 

developed and have outstanding based nano 
characteristics [36]. Nature's inertia in the face of 
biotechnology of synthetic polymers, on the other 
hand, not only protects them from adverse 
biochemical functions but also prohibits them 
from promoting bio-responsive reactions [37]. For 
building a uniform surface layer of a polymeric 
cardiovascular scaffold, microbial substances 
may be mechanically immobilized or conjugated 
by organic compounds. Biological materials for 
the bio-responsive property include development 
factors, extracellular matrix (ECM) molecules, 
anti-coagulant heparin, and thrombomodulin [38, 
39]. 

 

 
 

Fig. 3. Steps in terminal events 
 

 
 

Fig. 4. Terminal events arise due to stenosis 
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Table 1. Biomaterials for cardiac tissue engineering (recently updated) cardiac tissue engineering biomaterials 
 

Biomaterials Utilized Technology Outcomes 

Heparin-based coacervate fibrin gel  

 Polycation: poly(ethylene argininylaspartate 
diglyceride)  

  Polyanion: Heparin  
Proteins: TIMP-3 or FGF-2 and SDF-1a are some of the 
proteins that have been identified. 

Coacervate-gel composite system  
 
 

Cardiomyocyte revascularization, stem cell preservation and 
homing [48]. 

3D collagen gel Cells:  

 Human cardiac microvascular endothelial cells  

 Human MSCs. 

Collagen carrier acquired from the 
market (Viscofan Bioengineering, 
Weinheim, Germany). 

Creation of a new blood vessel and regeneration of new 
cardiomyocytes [49]. 

Fibrin patch - fibrinogen with thrombin Cells: 
Iron oxide nanoparticles labeled bone marrow-derived 
mesenchymal stem cell 

thrombin-fibrinogen mask 
 

The epicardially implanted cells lasted 21 days after being 
implanted. The effectiveness is dependent on the paracrine 
function of bone marrow mesenchymal stem cells (BMMSC) 
[50]. 

Chitosan film or polyaniline doped with phytic acid. 
 
 

Surface adsorption and film casting The patch's electroactivity was attributed to phytic acid's 
heavy chelation behaviour with chitosan. Surface resistivity is 
reduced (35.85 6 9.40 kX/sq.) [51]. 

Mesoporous nanoparticles tagged with H2O2- sensitive probe 
Therapeutic drug: Captopril 

Nanoparticles are small objects with a 
high surface area. 

Enhancement of the drug carrier's clinical potency Captopril 
release from nanoparticles according to a predetermined 
schedule [52]. 

PLA Proteins: G-CSF Electrospinning is the process of 
spinning metal with electricity. 

Vimentin 1 cell colonization has increased. Inflammatory 
resistance is reduced. ECM remodeling and the construction 
of new blood vessels [53]. 

Neuregulin encapsulated PLGA microparticles Collagen Cells:  

 Human adipose derived stem cells  

The water/oil/water emulsion process 
was used to make PLGA microparticles. 

Neuregulin shrinks infarcts while also encouraging 
cardiomyocyte proliferation. Arterioles and capillaries 
regrowth are supported by this supplement [54]. 

Multi-armed crosslinker poly ethylene glycol diacrylate 
(PEGDA)700-Melamine (PEG-MEL) Thiol-modified hyaluronic 
acid (HA-SH) hydrogel  

Hydrogel with PEG-MEL/HA-
SH/graphene oxide 

Mechanical and conductive properties that were anti-fatigue. 
Mechanical and electrical signals are effectively transmitted 
by hydrogel [55]. 

Collagen scaffold Cells:  

 Cardiomyocytes 

 Smooth-muscle cells  

 Endothelial cells from human iPSCs  

3D printing with multiphoton excitation Cellular synchrony improved heart efficiency, reduces 
apoptosis and infarction size [56]. 

oly(E-caprolactone) fiber  Electrospinning Scaffolds resemble with the well-organized ECM of a healthy 
human heart [57]. 
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Vascular endothelial growth factor (VEGF), 
essential fibroblast growth factor (bFGF), 
hepatocyte growth factor (HGF), stromal cell-
derived factor-1 (SDF-1), insulin-like growth 
factor1 (IGF-1), platelet-derived growth factor, 
granulocyte-colony stimulating factor (G-CSF), 
angiopoietin, periostin, and neuregulin are 
growth factors enhanced the bio-responsive 
properties of scaffold [40-44]. Collagens, 
elastins, fibronectins, fibrillins, lamellins, and 
nephronectin are ECM molecules shown to aid 
bio-responsive properties. There is a need to 
have a deeper understanding of cardiac tissue 
changes during physiological and pathological 
conditions such as cardiac ischemia and heart 
failure [45, 46]. 
 

3.1 Clinic-based Therapeutic Recovery 
Methods and Their Drawbacks 

 
To a certain extent, pharmacological treatments 
strategies can help to decrease the pathological 
load of cardiovascular diseases. However, they 
prevent the healing or regeneration of weakened 
myocardial tissue. Myocardial tissue is a type of 
tissue found in the heart. Currently, repairing 
patches originating from small intestinal tissue is 
an advanced treatment procedure used in 
hospitals to treat left ventricle (LV) dilation and 
aneurysm involved with heart failure. 
Bovine/porcine pericardium covers the ischemic 
region [47]. The protected patch acts as a 
functional shield to prevent further LV thinning 
and preserves cardiac function. Furthermore, the 
xenogeneic nature and biodegradability of such 
patches in-vivo systems pose significant 
difficulties. This review covers a broad range of 
biological and non-biological biomaterials 
employed in the management and treatment of 
CVDs, summarized in Table 1. 

 
4. NANOTECHNOLOGY AIDED: 

MYOCARDIAL SCAFFOLDING 
MANUFACTURING  

 
The use of nanotechnology to fabricate scaffolds 
results in a unique nano-topography closely 
resembles that of Endothelial natural tissues. 
These nano-enriched scaffolds can revolutionize 
cardiac tissue engineering when combined with 
stem cells. The electrospinning technique allows 
for mixing biological and synthetic polymers to 
create nanofibrous structures [58]. 
Electrospinning poly-(lactide-co-caprolactone) 
and poly-(ethyl oxazoline) to build a nanofibrous 
scaffold results in a heterogeneous fiber 

distribution with an average diameter (500 to 700 
nm and 50 to 200 nm) [59]. The microscopic 
observation of collagen fibrils observed in the left 
ventricle myocardium tissues of foetal and 
newborn rats matched this unique nano-
architecture perfectly. When comparing the 
cardiac performance of the simultaneous 
development factor scaffolds inserted group to 
the non-loaded and polytetrafluoroethylene 
groups, echocardiography and ECG analyses 
revealed better cardiac function in the double 
growth factor scaffolds transplanted 
organizations. Smooth muscle actin staining was 
also used to validate molecular proof of 
neovascularization in the implanted area [60], the 
treatment hierarchy overlay for CVDs, 
represented in Fig. 5. 
 

5. SYSTEMS OF NANOPARTICULATES 
FOR THE TREATMENT AND 
DIAGNOSIS OF CVDs 

 
Because of their unusual multi-functionality, 
nanoparticles have shown great promise in 
providing a medium for selective drug delivery. 
Nanoparticles' most significant properties are 
their ability to deliver and target drugs to their 
targeted sites.  
 

5.1 Nanomaterials with Targeted Drug 
Delivery to Treat Cardiovascular 
Diseases (CVDs) 

 
Biodegradable polymers including poly(lactide), 
copolymers (PLGA), poly(-caprolactone) (PCL), 
poly(lactide-coglycolide) and poly(amino acids) 
have been used to make a variety of polymeric 
nanomaterials for drug delivery [61]. CVDs have 
also been stated to use these types of 
nanoparticles as a delivery mechanism. In an ex-
vivo arterial model, Labhasetwar et al. 
investigated the efficacy of nanopolymeric drug 
delivery systems for the treatment of venous 
thrombosis in 1997 [62]. A cationic agent was 
used to modify the surfaces of the poly (lactide-
coglycolide) (PLGA) polymeric nanoparticles. 
The arterial absorption of surface coated 
nanoparticles was found to be ten times greater 
(10-fold) than that of non-coated nanoparticles in 
this study. They discovered that arterial uptake 
was size dependent, with small diameter 
particles (ca.100 nm) penetrating the ex-vivo 
model of the dog carotid artery better than large 
diameter particles (200 nm). When the artery 
was not cleaned, they found that 26% of the 
nanoparticles were retained; moreover, washing
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Fig. 5. The overall hierarchy of treatment modalities currently available to cure cardiovascular 
disorders. 

 
with Ringer's solution resulted in a 6% reduction 
in retaining nanoparticles, showing that the stent 
surface nanoparticles can be washed away 
through vascular flow [63]. 
 
Quercetin, as an antioxidant, has been shown to 
protect against cardiovascular disease. 
According to a recent study by Giannouli et al., 
PLGA loaded with quercetin showed promising 
efficacy for atherosclerosis prevention, with 
strong encapsulation efficiencies and appropriate 
drug release results, suggesting their potential to 
defend against CVDs. Their team is investigating 
the ability of these particles in vitro and in vivo 
[64]. 
 

5.2 Cardiovascular diseases 
management with Traditional 
formulation vs. new Nanomedicine 

 
This study discovered a large number of 
nanomedicine products (Table 2) that have been 
licensed for use in humans with CVDs. Since 
medical industries are so closely regulated, it's 
impossible to extrapolate these figures explicitly. 
Swings in the economy and regulatory 
mechanisms have an impact. There are, 

however, few clear developments in 
nanomedicine's potential. The field's relative 
adolescence is a recurring theme throughout. 
The issue of persistence is one of the main 
questions about the application of 
nanotechnology in the body. Traditional 
therapeutics are usually ingested by the body 
and the residues are excreted immediately after 
delivery. Although some nanoparticles have 
demonstrated persistent in vivo deposits that can 
last months or years. 
 

5.3 Diagnostics of CVDs Using 
Nanomaterials 

 
Nanoparticles can be used in CVD diagnostics 
(Fig. 6) because they target specific dangerous 
sites for detection. One example is the use of 
nanoparticles in the early identification of 
atherosclerosis. Nahrendorf and colleagues 
achieved this aim by using mono-crystalline 
magnetic nanoparticles (MNPs) for the 
noninvasive detection of vascular cell adhesion 
molecule-1 (VCAM-1), an indication of 
inflammation. The multivalent MNPs 
functionalized with a peptide to target VCAM-1-
expressing cells in their research. The MNPs can 
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detect the presence and severity of inflammation, 
offering valuable information, the ability to 
diagnose atherosclerosis in its early stages [65]. 
 
Magnetic resonance imaging (MRI) diagnosis 
has also been improved using nanoparticles. 
They can be used as ideal contrast agents for 
MRI because of their targeting capacity. Imaging 
the rejection site during rat cardiac allogeneic 
transplantation is effective for this technique [66]. 

The signal produced by macrophages 
successfully labeled with magnetic particles 
indicated the degree and position of rejection. 
Some analogous technologies (molecular 
imaging and determination of level of 
biomarkers) are used to determine inflammatory 
and foreign body reactions in various other 
cardiovascular-related disorders in the future to 
identify macrophages [67-70]. 

 
Table 2. Nanomaterials and Conventional formulations for CVD treatment [65]. 

 
Type of drug  Drug Conventional formulation Nanomaterials 

 Lipid increasing  Isosorbide 
monohydrate 

40 mg Monoket retard pill 
(Adeka, Turkey) Monodur 60 
mg pill (Astra Zeneca, 
Canada) 

Monisolmicropellet capsule 60 mg 
(Zorka, Russia) -Monitanmicropellet 
capsule 60 mg (Wyeth, Canada)-Mono 
corax micropellet capsule 60 mg 
(corax, Germany) [65] 

Anti-hypertensive Diltiazem 
hydrochloride 

Diltiazem ampoule 25 mg 
(Mustafa Nevzat, Turkey).  

60 mg Altiazem SR micropellet (Nobel, 
Turkey) - 60 mg Dilatam SR 
micropellet (Abic, Israel) - 60 mg 
Coramil SR micropellet (Sanofi, 
Sweden) [65] 

Lipid increasing  Phenofibrate Lipidil tablet 200 mg 
(Fournier, Germany, 
Canada) 
Lipofene tablet 200 mg 
(Teofarma, Italy) 

Lipofene SR micropellet 250 mg 
(Nobel, Turkey) Feno-micro 
micropellet 250 mg (Apotex, Hungary 
[65] 

 
 

 
 

Fig. 6. Nanomaterials used for CVDs treatment. 
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Table 3. Nanotechnologies and nanodrugs used to treat CVDs [77-85]. 
 

Drug Delivery Nanoparticles System Process 
involved  

Therapeutics  Techniques utilized Investigation  

Targeted drug 
delivery 

Iron hydroxyapatite 
nanoparticles in 
superparamagnetic 
properties 

Oxidative 
process 

A model medicine 
is ibuprofen. 

Acute stimulation of isolated adult 
cardiomyocytes, used in rats to 
determine the biological effects. 
Involvement of electromagnetic 
radiation on the cardiac system in 
vitro and in vivo. 

In both cases, no changes in cardiac 
electrophysiological properties, suggesting 
hierarchy of treatment low frequency 
combination of FeHAs and magnetic 
activation is an auspicious way for 
controlled release drug delivery to the 
failing heart [77]. 

Targeted drug 
delivery  

Porous silicon NPs 
functionalized with atrial 
natriuretic peptide 

Electrochemical 
anodization 

Trisubsituted3,4,5- 
isoxazole 

For cardiac repair in the ischemic 
heart, targeted drug penetration 
into left ventricle (epicardial 
surface). 

In ischemic heart, increased ANP-PSi 
nanoparticle aggregation, especially in left 
ventricle (endocardial layer) results in 
enhanced colloidal stability and cellular 
interactions. Non-myocytes and 
Cardiomyocytes with low nanoparticle 
toxicity [78]. 

Targeted drug 
delivery  

PLGA NPs is conjugated 
with anti-CD31 
antibodies. 

Evaporation with 
a paired emulsion 
solvent 

4- hydroxyl 
tamoxifen 

Tissue-specific antibodies allow 
targeted drug delivery into 
endothelial cells. 

Increased ability to transmit targeted 
messages and increased uptake by 
endothelial cells [79]. 

Targeted drug 
delivery 

Lipid nanocarriers 
updated with atrial 
natriuretic peptide. 

Solvent 
evaporation 

Prodrug of oleate 
adenosine 

After intravenous infusion, in vivo 
inhibition action on infarct 
duration, tissue distribution, and 
pharmacokinetics in rats with 
heart muscles. 

NPs have longer circulated properties than 
free drugs and can be targeted into the 
infarcted myocardium in a receptor-
dependent process [80]. 

Diagnosis PET-labeled magneto-
fluorescent NPs that 
have been dextran and 
DTPA-modified. 

Reduction of 
metal 

  - Macrophage PET-CT imaging of 
inflammatory atherosclerosis. 

Specificity and cellular transmission have 
both improved [81]. 

Nano structured 
device 

Paclitaxel-eluting stent 
with a nanoporous matrix 
that is free of polymers 

- Paclitaxel is a 
drug that is used 
to treat diseases. 

Endothelization and tumour cell 
metaplasia reduction in a porcine 
system 

Desirable drug elution properties and 
targeted penetration into a nearby 
coronary artery [82]. 

Nano 
Coating 

Magnetizable iron–
platinum (FePt) alloy 
nanoparticles are used to 
coat stents. 

Reduction of 
chemical 
substances 

- The magnetic stent's ability to trap 
stem cells for reendothelialization 
in vitro 

High-performance capture of progenitor 
stem cells [83]. 

Nano 
Coating 

stents with g PLA NPs 
coating 

Electrospinning Dipyridamole Tissue engineering 
 

Deal with artery thrombosis, an effective 
drug-eluting coating on stents has been 
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Drug Delivery Nanoparticles System Process 
involved  

Therapeutics  Techniques utilized Investigation  

developed [84]. 

Nano 
Coating 

MMSNs and CNTs are 
used to coat stents. 

Coprecipitation Anti-restenotic 
treatments 

A drug-eluting two-layered 
polymer free-composite coating 
with outstanding network nano- 
topologies that is crack-free. 

In contrast to commercial polymer-coated 
DES, the in vivo analysis reveals that this 
composite coating has the apparent benefit 
of rapid endothelization due to its unusual 
3D nanostructured topology [85]. 

 
Table 4. Advantages nanoparticles in cardiovascular implantable systems [86-89] 

 
Implantable devices for the cardiovascular 
system 

Advantages 

 
 
Biomedical instruments coated with 
nanoparticles 

• Providing sustained release of drugs to reduce improvements in local opioid toxicity. 
• Their sub-micron and sub-cellular size accounts for their high tissue absorption. 

• By avoiding the use of polymers, we will achieve higher biocompatibility and lower toxicity. 
• Chemically labile drugs are protected by an inert shell. 

 
Biomedical instruments with nanostructure 

• Enhances biomaterial-blood or organ compatibility by simulating the sub-micron topography of internal tissue. 

• Endothelial cell proliferation is boosted. 
• The production of vascular smooth muscle cells is inhibited. 
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6. NANOMATERIALS FOR CVDs 
DEVICES 

 
In recent decades, nanotechnology-based 
systems have opened up new possibilities for 
developing new devices to handle CVDs. A stent 
is a tubular tube that protects a part of a blood 
vessel or some other anatomical lumen while 
preserving its patency. Balloon angioplasty was 
the most popular option for bypassing blocked 
artery arteries until the advent of coronary stents 
as bare metallic stents (biologically synthesized) 
[71]. However, platelet aggregation, vascular 
smooth muscle cell migration, elastic recoil, and, 
finally, thrombus formation can all occur due to 
balloon angioplasty and stent placement [72]. It 
can be resolved by modifying the stent surface 
and adding medicinal agents to the mix. Different 
instruments used in the cardiovascular sector. A 
special combination of nanomaterial ensures 
cost-effective design, efficient operation, and 
long-term degradability without adverse effects. 
There are two basic approaches for the use of 
nanomaterials in CVD-related applications. The 
first method is nano-coating, which improves the 
biocompatibility and integration of medical 
implants with surrounding tissues. Another factor 
that enhances implants' (biologically 
synthesized) electrical, electronic, and biological 
characteristics is nanostructured materials to 
replicate naturally occurring structures. 
 

7. NANOMATERIAL TOXICITY 
 
Nanoparticle toxicity may be more critical than 
other materials due to their mobility in the body. 
Where well-known stable, biocompatible 
materials are used as the matrix for 
nanocomposites. Despite an increasing body of 
literature focusing on the role of nanoparticles in 
cardiovascular applications, several reports have 
indicated that various types of nanoparticles 
have cytotoxic properties [73, 74]. For example, 
ultra-small superparamagnetic iron oxide 
nanoparticles can cause thrombosis in-vivo, 
platelet aggregation, nucleic acid injury, and 
formed cardiac reactive oxygen species [75]. 
Pulmonary and coronary injuries were observed 
following the application of zerovalent iron 
nanoparticles. The enhance in oxidative danger 
in human A549 alveolar epithelial cells and EA. 
hy926 vascular endothelial cells were dead after 
exposure to nanostructured zerovalent iron in-
vitro. This is also true for carbon nanoparticles 
and nanotubes (CNT), which are associated with 
many adverse side effects as used in biological 

applications. After being treated with single-wall 
CNT (SWCNT) or double-wall CNT, aortic 
endothelial cells showed a reduction in viability 
(DWCNT). After administration of either 
SWCNTs or DWCNTs to mice, increased direct 
monocyte adhesion to endothelial cells and 
initiated atherosclerosis. Other coronary 
conditions may be triggered by atherosclerotic 
plaque. After treatment with multi-walled carbon 
nanotubes (MWCNTs), plasma levels of acute-
phase protein, a marker of cardiovascular 
disease, increased [76]. 
 

The toxicity profile of a nanomaterial that would 
be used in regenerative medicine or tissue 
engineering is critical. An excellent example of 
toxicity that could occur in extracellular and 
intracellular levels results in a broad spectrum of 
disruption in signaling cascades. Before any 
biomedical use, regardless of the excellent 
properties of any synthesized nanomaterial, a 
thorough assessment of its potential toxicity is 
needed. The field's newness should be 
considered, including the confirmed toxic effects 
of nanomaterials that act as novel incorporations 
of cardiovascular regenerative therapy. Further 
study is needed to comprehensively analyze the 
toxicity, especially chemotoxicity and 
inflammatory responses. In addition, future work 
should plan to introduce novel ways to reduce 
toxicity, represented in Table 3 [77-85] and Table 
4 [86-89]. 
 

8. CONCLUSION  
 

Nanotechnology holds potential in the 
management of life-threatening diseases like 
CVD. The promising approach provides 
infrastructure for clinicians, scientists, and 
researchers to develop newer therapies that 
positively impact the lives of patients globally and 
improve health and well-being. 
Nanotherapeutics, nanomaterial devices are 
more geared towards personalized medicines 
and provide patient-tailored treatment to disease 
and individual patients. Newer strategies and 
techniques are coming into the market with 
advancements in nanomedicines. The treatment 
approaches can significantly improve and 
promise to provide alternatives for existing 
surgical and pharmacological medication. The 
nanosensor and biosensor engineering devices 
are becoming popular and helpful in diagnosing 
diseases. Furthermore, marker detection 
provides a patient-centric and accurate, cost-
effective diagnosis of heart disease. In the future, 
Nanomaterials need combination approaches of 
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an automated algorithm and computational 
methods for further research to target, enhancing 
the accuracy and efficacy of CVD diagnosis. 
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