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�rough the collision-system configuration, the Tsallis statistics is combined with a multisource thermal model. �e improved model 
is used to investigate the transverse momentum and pseudorapidity of particles produced in Xe–Xe collisions at √�푠�� = 5.44 TeV. 
We discuss detailedly the thermodynamic properties, which are taken from the transverse momentum �� distributions of �, �, and � for different centralities. �e pseudorapidity � spectra of charged particles for different centralities are described consistently in 
the model. And, the model result can estimate intuitively the longitudinal configuration of the collision system.

1. Introduction

�e important goal of the ultrarelativistic heavy-ion collisions 
is to find and study the Quark–Gluon Plasma (QGP), which 
is a new matter state of strongly interacting quarks and gluons 
at high temperature and density [1–3]. From 2010 to 2019, the 
Large Hadron Collider (LHC) has mainly carried out p-p,  
p-Pb, and Pb–Pb collision experiments at various collision 
energies, which can provide different types of collision-system 
configurations. In 2017, the LHC performed a different kind 
of hadron collision at high energy, i.e. the first Xe129 ion colli-
sions at √�푠�� = 5.44 TeV [4–7]. Since the nucleons of the Xe129 
nucleus is fewer than that of Pb208 nucleus, the investigation 
of Xe-ion collisions can roughly bridge or connect the gap 
between � and Pb ion collisions. As a good intermediate-size 
system, the Xe–Xe colliding system brings a wonderful oppor-
tunity to discuss the colliding-system size dependence of mul-
tiparticle production in high-energy nuclear collisions [8, 9]. 
�e nucleus collisions at high energies offer numerous exper-
imental data about charged particle production, such as pions, 
kaons, and protons. �e particle production in the collision 
contains the interaction effects between hard and so� QCD 
processes. �e feature discussion of the particle distribution 
can be used to infer the evolution and dynamics of different 
collision systems at different center of mass energies.

With respect to the final-state observables in these colli-
sions, the particle transverse momentum and pseudorapidity 

multiplicity are two key measurements to understand the par-
ticle-production process and the matter evolution under the 
extreme conditions. �e transverse momentum spectra are 
very important because they can provide essential information 
about QGP created in the collisions. �e charged-particle 
pseudorapidity multiplicity is related to the early geometry of 
the collision system and is of great interest to investigate the 
properties of the collision-system evolution. Recently, the 
ALICE Collaboration measured charged-particle transverse 
momentum spectra and multiplicity density in Xe–Xe colli-
sions at √�푠�� = 5.44 TeV at the LHC [5, 6]. In this work, the 
transverse momentum spectra are analyzed in an improved 
multisource thermal model, where the Tsallis statistics [10–13] 
is imported. Combined with the collision picture, we also dis-
cuss the charged-particle pseudorapidity density for different 
collision centralities. �e investigation of the particle produc-
tion in different collision systems can help us understand the 
matter evolution in the different collisions.

2. The Particle Spectra in the Improved 
Multisource Thermal Model

In high-energy nucleon or nuclei collisions, the thermody-
namic information of the system evolution is very rich. �ese 
identified particles produced in the collisions may be regarded 
as a multiparticle system. �e identified particles emit from 
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different sources. We can assume that many emission sources 
are formed in the interacting system [14–17]. In the stationary 
reference frame of a considered source, the distribution func-
tion of the particle momentum �� is given by

where �, �, and � is the normalization constant, the temper-
ature and the nonequilibrium degree parameter, respectively. 
�e � value is close to 1. For the chemical potential �휇 = 0, the 
distribution function is

When � tends to 1, the density function is the standard 
Boltzmann distribution. �e particle momentum function ��耠 = �(�1) can be obtained by the Monte Carlo calculation, 
∫�푝�

0 �푓(�푝�耠) �푑�푝�耠 < �푅1 < ∫�푝�+�푑�푝�

0 �푓(�푝�耠) �푑�푝�耠. �e particle rapidity �� 
is

where �� and �푝�
� = �푝�

cos�휃� is the energy and longitudinal 
momentum, respectively. �e pseudorapidity and the trans-
verse momentum are

where �휃�耠 = arctan [2√�푟2(1 − �푟2)/(1 − 2�푟2)] is the particle 
emission angle and is calculated by the Monte Carlo method. 
�e parameter �2 is a random number distributed evenly in 
[0, 1]. Due to ��=��

�, the distribution function of the particle 
transverse-momentum in the laboratory reference system 
frame is

In contrast to the transverse momentum, the particle pseud-
orapidity � in the laboratory reference system frame is not easy 
to calculate. Since �� is a result of the source reference frame, 
one source is only considered in Equation (1). For the calcu-
lation of the pseudorapidity, the space scale of the collision 
system cannot be ignored at the pseudorapidity � space. Along 
the beam, these sources can be grouped into four categories 
as follows: a projectile leading-particle source with a pseudo-
rapidity shi� ����, a projectile cylinder composed of a series of 
sources with pseudorapidity shi�s ��� (�휂min

�� ≤ �휂�� ≤ �휂max

�� ), a 
target cylinder composed of a series of sources with pseudo-
rapidity shi�s �휂min

�� ≤ �휂�� ≤ �휂max

��  and a target leading-particle 

(1)

�푓�푝�(�푝�耠) = 1
�푁

�푑�푁
�푑�푝�耠 = �퐶�푝�耠2[[

[
1 + (�푞 − 1) √�푝�耠2 + �푚2

0 − �휇
�푇 ]]

]

−�푞/(�푞−1)
,

(2)�푓�푝�(�푝�耠) = 1
�푁

�푑�푁
�푑�푝�耠 = �퐶�푝�耠2[1 + (�푞 − 1)�푚�푇

�푇 ]−�푞/(�푞−1).

(3)�� = 1
2 ln

�퐸� + �푝�
�

�퐸� − �푝�
�
,

(4)�휂� = −ln[tan�휃
�

2 ] = 1
2 ln(

�푝� + �푝�
�

�푝� − �푝�
�
),

(5)
�푝�耠
�푇 = √�푝�耠2

�푥 + �푝�耠2
�푦 = �푝�耠

sin�휃�耠,

(6)

�푓�푝�푇
(�푝�푇) =

1
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�푑2�푁
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.

source with a pseudorapidity shi� ����. In the laboratory ref-
erence system frame, the Monte Carlo pseudorapidity function 
of particles from the four parts can be written as

By the �� distribution function Equation (1), we can obtain 
the source pseudorapidity �� in the stationary reference frame. 
�en, the pseudorapidity distribution in the laboratory refer-
ence frame can be derived from the � space scale of the colli-
sion system, which is described by the collision Equations (9) 
and (10).

3. Discussions and Conclusions

Figure 1 shows transverse momentum �� distributions of 
pions �, kaons � and protons � produced in Xe–Xe collisions 
at √�푠�� = 5.44 TeV. �e filled circles indicate the experimental 
data [5] for nine centrality bins (from 0% to 5% central colli-
sions to 70–80% peripheral collisions). �e lines are the results 
of the Equation (6). For pions, kaons and protons, the nonequi-
librium degrees are �푞 = 1.141, �푞 = 1.080 and �푞 = 1.022, respec-
tively. For the same particles, the � is a constant value in each 
interval of the centrality. �is reflects nonequivalent excitation 
of the thermal sources of the three particles in the centrality 
classes. �e temperatures for the three kinds of particles are 
shown in Tables 1–3 with �휒2/ndf  and increase with the 
increase of the collision centrality. �e �� differential cross 
sections for different collision centralities are governed by the 
temperature �, where the reaction system freezes out and the 
considered particles will no longer interact. �e particles at 
low �� region are more close to a thermal equilibrium and the 
particles at high �� region are more close to be produced in a 
hard scatterings, which is determined by pQCD [18, 19]. �e 
temperature is used to reflect quantitatively the excitation of 
emission sources of final-state particles.

From pions to protons, these particle masses affect the 
slope of the transverse momentum �� spectra. So, the temper-
ature � and nonequilibrium degree � depend on the final-state 
particle mass. With increasing particle mass, the temperature � increases generally and the nonequilibrium degree � 
decreases. �e mass dependence may originate from the 
deformed nuclei, Xe. With the matter produced in the collision 
moving at a finite velocity, the Lorentz-boost magnitude of the 
momentum distribution occurs obviously and is proportional 
to the particle mass. �erefore, the � values of �, � and � 
systems are different. �is shows how close the three systems 
are to the kinetic equilibrium.

Figure 2 shows pseudorapidity � spectra of charged 
particles produced in Xe–Xe collisions at √�푠�� = 5.44 TeV. �e 
filled circles indicate the experimental data [6] for twelve 
centrality bins (from 0% to 2.5% central collisions to 80–90% 
peripheral collisions). �e lines are the results of the Equations 

(7)�휂1 = �휂�푝�푙�푝 + �휂�耠,
(8)�휂2 = �휂�푝�푐 + �휂�耠, �휂min

�푝�푐 ≤ �휂�푝�푐 ≤ �휂max

�푝�푐 ,
(9)�휂3 = �휂�푡�푐 + �휂�耠, �휂min

�푡�푐 ≤ �휂�푡�푐 ≤ �휂max

�푡�푐 ,
(10)�휂4 = �휂�푡�푙�푝 + �휂�耠.
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(7)–(10). �e heights of the pseudorapidity spectra exhibit 
strong centrality dependences. It is because the number of 
observed particles is approximately proportional to the 
number of collision participant nucleons, which is a function 
of the impact parameter [20–23]. �e configuration parameters 
of the thermalized cylinder are shown in Table 4. �e �max

��
 and 

�min

��  slightly increase with collision centralities. �e 
pseudorapidity distributions of the peripheral collision are 
wider than that of the most central collision. So, the length of 
the thermalized cylinder at � space decreases with the impact 
parameter. It means the number of thermal sources produced 
in Xe–Xe collision increases with centralities. �e source 
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Figure 1: Transverse momentum distributions of �, � and � in Xe–Xe collisions at √�푠�� = 5.44  Tev. �e filled circles indicate the experimental 
data in nine centrality bins [5]. �e lines are the results of Equation (6). 
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dependence are discussed. Based on the result, the pseudorapidity � spectra of charged particles are reproduced. �e model can 
describe both transverse momentum spectra and pseudorapidity 
spectra. �e configuration of the intermediate-size collision sys-
tem is quantized visually by the collision picture, which can 
characterize the primary properties of the collision system.

Data Availability

Our paper is a theoretical investigation. �is paper has explained 
how to calculate the theoretical results in detail.
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contributions from different categories are seen intuitively and 
the configuration of the collision system is quantized visually. 
It helps us understand the influence of the collision-system 
size and the evolution information of the produced matter in 
the collision [24, 25].

In reference [6], the experimental data of the pseudorapidity 
spectra in Xe–Xe collision at √�푠�� = 5.44 TeV are first presented. 
In this paper, the Tsallis statistics is combined with the colli-
sion-system configuration, i e., the multisource thermal model. 
�e improved model is used to investigate the particle production 
in the intermediate-size collision system, Xe–Xe collision [20, 26]. 
By the study of the transverse momentum �� distributions of �, � and �, the temperature and nonequilibrium degree are 
obtained. �e centrality dependence and the particle mass 

Table 1: Values of parameters used in Figure 1(a). �e unit of � is 
GeV.

Centrality � �휒2/ndf
0–5% 0.101 0.447
5–10% 0.100 0.283
10–20% 0.099 0.124
20–30% 0.098 0.150
30–40% 0.097 0.202
40–50% 0.096 0.261
50–60% 0.095 0.312
60–70% 0.094 0.286
70–90% 0.091 0.472

Table 2: Values of parameters used in Figure 1(b). �e unit of � is 
GeV.

Centrality � �휒2/ndf
0–5% 0.202 0.165
5–10% 0.200 0.160
10–20% 0.199 0.144
20–30% 0.198 0.105
30–40% 0.196 0.275
40–50% 0.195 0.369
50–60% 0.191 0.424
60–70% 0.183 0.571
70–90% 0.166 0.601

Table 3:  Values of parameters used in Figure 1(c). �e unit of 
 � is GeV.

Centrality � �휒2/ndf
0–5% 0.382 0.317
5–10% 0.381 0.295
10–20% 0.379 0.210
20–30% 0.378 0.226
30–40% 0.377 0.305
40–50% 0.374 0.514
50–60% 0.342 0.590
60–70% 0.324 0.646
70–90% 0.278 0.675
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Figure 2: Pseudorapidity density of charged particles produced in 
Xe–Xe collisions at √�푠�� = 5.44  Tev. �e filled circles indicate the 
experimental data in 12 centrality bins [6]. �e lines are the results 
of the Equations (7)–(10).

Table 4:  Values of parameters corresponding to the curves in 
Figure 2.

Centrality �max

�� �min

�� ���� �
0–2.5% 3.70 0.05 4.60 0.101
2.5–5% 3.70 0.05 4.60 0.101
5–7.5% 3.70 0.07 4.60 0.101
10–20% 3.70 0.06 4.60 0.101
20–30% 3.75 0.06 4.60 0.101
30–40% 3.80 0.06 4.60 0.101
40–50% 3.80 0.06 4.60 0.101
50–60% 3.85 0.06 4.60 0.101
60–70% 3.90 0.06 4.60 0.101
70–80% 3.95 0.06 4.60 0.101
80–90% 4.00 0.06 4.60 0.101
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