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In this paper, we consider the following fourth order elliptic Kirchhoff-type equation involving the critical growth of the form
Δ2u − ða + b

Ð
ℝN j∇uj2dxÞΔu + VðxÞu = ðIα ∗ FðuÞÞf ðuÞ+λjuj2∗∗−2u, inℝN ,

u ∈H2ðℝNÞ,

(
where a > 0, b ≥ 0, λ is a positive parameter, α ∈ ðN

− 2,NÞ, 5 ≤N ≤ 8, V : ℝN ⟶ℝ is a potential function, and Iα is a Riesz potential of order α. Here, 2∗∗ = 2N/ðn − 4Þ with N
≥ 5 is the Sobolev critical exponent, and Δ2u = ΔðΔuÞ is the biharmonic operator. Under certain assumptions on VðxÞ and f ðuÞ,
we prove that the equation has ground state solutions by variational methods.

1. Introduction

In this article, we study the following fourth-order elliptic
Kirchhoff-type equation involving the critical growth of the
form:

Δ2u − a + b
ð
ℝN

∇uj j2dx
� �

Δu + V xð Þu = Iα ∗ F uð Þð Þf uð Þ+λ uj j2∗∗−2u, inℝN ,

u ∈H2 ℝN� �
,

8><
>:

ð1Þ

where a > 0, b ≥ 0, λ is a positive parameter, 5 ≤N ≤ 8, V
: ℝN ⟶ℝ is a potential function, and Iα is a Riesz potential
of order α ∈ ðN − 2,NÞ defined by Iα = ðΓððN − αÞ/2ÞÞ/ðΓðα/
2ÞπN/22αjxjN−αÞ. Here, 2∗∗ = 2N/ðN − 4Þ with N ≥ 5 is the
Sobolev critical exponent, and Δ2u = ΔðΔuÞ is the biharmonic
operator, that is, Δ2u =∑N

i=1ð∂4/∂x4i Þu +∑N
i≠jð∂4/∂x2i ∂x2j Þu.

Besides, VðxÞ: ℝN ⟶ℝ is a potential function satisfying
(V1) V ∈ CðℝN ,ℝÞ and inf

x∈ℝN
VðxÞ≔ V0 > 0

(V2) measfx ∈ℝN : VðxÞ ≤Mg <∞, where meas
denotes the Lebesegue measure in ℝN and V0 and M are
positive constants.

Furthermore, we suppose that the function f ∈ C1ðℝ,ℝÞ
satisfies

(f 1) f ðtÞ = oðtα/NÞ as t⟶ 0
(f 2) lim

jtj⟶+∞
ð f ðtÞ/tðα+2Þ/ðN−2ÞÞ = 0

(f 3) f ðtÞ/t is increasing on ð0, +∞Þ and decreasing on
ð−∞, 0Þ

(f4) f ðtÞ is increasing on ℝ
On the one hand, in 2012, by the variational methods,

Wang and An [1] studied the following fourth-order equa-
tion of Kirchhoff type:

Δ2u −M
ð
Ω

∇uj j2dx
� �

Δu = f x, uð Þ, x ∈Ω,

u = ∇u = 0, x ∈ ∂Ω,

8><
>: ð2Þ
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and obtained the existence and multiplicity of solutions.
Later, Cabada and Figueiredo [2] considered a class of gen-
eralized extensible beam equations with critical growth in
ℝN as follows:

Δ2u −M
ð
ℝN

∇uj j2dx
� �

Δu + u = λf uð Þ+ uj j2∗∗−2u, x inℝN ,

u ∈H2 ℝN� �
,

8><
>:

ð3Þ

where M : ℝ+ ⟶ℝ+ is continuous, f ∈ Cðℝ,ℝÞ, N ≥ 5,
and λ > 0 is a parameter. With the help of the minimax the-
orem and the truncation technique, the existence of nontriv-
ial solutions of equation (3) is proved for λ sufficiently large.
Recently, Song and Shi [3] proved the multiplicity of solu-
tions for the following fourth-order elliptic equation with
critical exponent

Δ2u − g
ð
Ω

∇uj j2dx
� �

Δu = λh x, uð Þ+ uj j2∗∗−2u, x ∈Ω,

u = ∇u = 0, x ∈ ∂Ω,

8><
>:

ð4Þ

where Ω ⊂ℝN is an open bounded domain with smooth
boundary, g : ℝ+ ⟶ℝ+ is continuous, h ∈ Cð�Ω ×ℝ,ℝÞ,
N ≥ 5, and λ is a positive parameter. Soon after that, Liang
et al. [4] obtained multiplicity of solutions to the following
generalized extensible beam equation with critical growth:

Δ2u −M
ð
ℝN

∇uj j2dx
� �

Δu +V xð Þu

= k xð Þ uj jq−2u+λ uj j2∗∗−2u, x inℝN :

ð5Þ

In fact, in the earlier time, Ma has already applied the
variational methods to study the existence and multiplicity
of solutions for the following fourth-order boundary value
problem of Kirchhoff type:

u″″ −M
ð1
0
u′
�� ��2dx

� �
u′ = f x, uð Þ, x ∈ 0, Lð Þ,

u″″ −M
ð1
0
u′
�� ��2dx

� �
u″ = q xð Þf x, u, u′

� �
x ∈ 0, 1ð Þ,

u 0ð Þ = u 1ð Þ = u″ 0ð Þ = u″ 1ð Þ = 0:

8><
>:

ð6Þ

For more details, readers can refer to [5, 6] and the ref-
erences therein.

Actually, for the special case of problem (2) with MðtÞ
= a + bt, then problem (2) is reduced to the following

fourth-order elliptic equations of Kirchhoff type:

Δ2u − a + b
ð
Ω

∇uj j2dx
� �

Δu = f x, uð Þ, x ∈Ω,

u = ∇u = 0, x ∈ ∂Ω:

8><
>: ð7Þ

This problem is related to the stationary analog of the
evolution equation of Kirchhoff type:

utt + Δ2u − a + b
ð
ℝN

∇uj j2dx
� �

Δu = f x, tð Þ: ð8Þ

Dimensions one and two are relevant from the point of
view of physics, engineering, and other sciences, because in
those situations model (8) is considered a good approxima-
tion for describing nonlinear vibrations of beams or plates
(see [7, 8]). Different approaches have been taken to attack
this problem under various hypotheses on the nonlinearity.
For example, very recently, Wang et al. [9] concentrated
on the following Navier BVPs:

Δ2u − λ a + b
ð
Ω

∇uj j2dx
� �

Δu = f x, uð Þ, x ∈Ω,

u = ∇u = 0, x ∈ ∂Ω,

8><
>:

ð9Þ

where Ω ⊂ℝN is a smooth bounded domain and λ, a, b > 0.
Applying mountain pass techniques and the truncation
method, they obtained the existence of nontrivial solution
to equation (9) for λ small enough when f ðx, uÞ satisfies
some superlinear assumptions. For whole space ℝN , Song
and Chen [10] studied the class of Schrödinger-Kirchhoff-
type biharmonic problems:

Δ2u − a + b
ð
ℝN

∇uj j2dx
� �

Δu +V xð Þu = f x, uð Þ, x ∈ℝN ,

u ∈H2 ℝN� �
,

8><
>:

ð10Þ

where f satisfies the Ambrosetti-Rabinowitz type conditions.
Under appropriate assumptions on V and f , the existence of
infinitely many solutions is proved by using the symmetric
mountain pass theorem.

On the other hand, in the past decades, many scholars
have studied the following problem:

−Δu +V xð Þu = Iα ∗ uj jp� �
uj jp−2u, ð11Þ

which is called nonlinear Choquard type equation. For the
physical background, we refer to [11–13] and the references
therein. Mathematically, the existence and qualitative prop-
erties of solutions to equation (5) have been studied for
decades by variational methods. See [11, 14, 15] for earlier
results and [16–26] for a recent work.
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Motivated by the works we mentioned above, espe-
cially by [4, 10], we consider the combination of equations
(7) and (11) and extend to the general convolution case in
ℝN . In our paper, we get the ground state solution of
problem (1).

Our main results are as follows:

Theorem 1. If V satisfies (V1)-(V2) and f ∈ C1ðℝ,ℝÞ verifies
(f1)-(f4), then problem (1) has a ground state solution.

For the convenience of expression, hereafter, we use the
following notations:

H ≔H2ðℝNÞ = fu ∈ L2ðℝNÞ: j∇uj, Δu ∈ L2ðℝNÞg
equipped with scalar product hu, viH =

Ð
ℝN ðΔuΔv + ∇u∇v +

uvÞdx
E≔ fu ∈H :

Ð
ℝNVðxÞu2dx <∞g equipped with scalar

product hu, vi = Ð
ℝN ðΔuΔv + ∇u∇v +VðxÞuvÞdx, therefore,

kuk = ½ÐℝN ðjΔuj2 + j∇uj2 + VðxÞu2Þdx�1/2

(i) LsðℝNÞð1 ≤ s ≤∞Þ denotes the Lebesgue space with
the norm jujs = ðÐℝN jujsdxÞ1/s

(ii) For any u ∈H2ðℝNÞ \ f0g, ut is denoted as

ut =
0, t = 0,ffiffi
t

p
u

x
t

� �
, t > 0

8<
: ð12Þ

(iii) C, C1, C2,⋯ denote positive constants possibly differ-
ent in different lines

Remark 2. By the assumptions of V , it is obvious that the
embedding E°H2ðℝNÞ is continuous. Furthermore, the
embedding E°LrðℝNÞ is continuous for r ∈ ½1,2∗∗Þ, and com-
pact for r ∈ ½1, 2∗Þ, where 2∗ = 2N/ðN − 2Þ if N ≥ 3 and 2∗
=∞ if N = 1 or 2. Thus, for each s ∈ ½2,2∗∗�, there is a Cε
> 0 such that jujs ≤ Cεkuk for all u ∈ E.

2. Preliminaries

In this section, we will give some very important lemmas.

Lemma 3. Assume (f1)-(f4) hold, then we have the following:

(1) For all ε > 0, there is a Cε > 0 such that j f ðtÞj ≤ ε

jtjα/N + Cεjtjðα+2Þ/ðN−2Þ and jFðtÞj ≤ εjtjðN+αÞ/N + Cε

jtjðN+αÞ/ðN−2Þ

(2) For all ε > 0, there is a Cε > 0 such that for every p
∈ ð2, 2∗Þ, jFðtÞj ≤ εðjtjðN+αÞ/N + jtjðN+αÞ/ðN−2ÞÞ + Cε

jtjpðN+αÞ/2N , and jFðtÞj2N/ðN+αÞ ≤ εðjtj2 + jtj2N/ðN−αÞÞ
+ Cεjtjp

(3) For any s ≠ 0, sf ðsÞ > 2FðsÞ and FðsÞ > 0

Proof. One can easily obtain the results by elementary calcu-
lation.

Lemma 4 (Hardy-Littlewood-Sobolev inequality [27]). Let
0 < α <N , p, q > 1 and 1 ≤ r < s <∞ be such that

1
p
+ 1
q
= 1 + α

N
, 1
r
−
1
s
= α

N
: ð13Þ

(1) For any f ∈ LpðℝNÞ and g ∈ LqðℝNÞ, one has

ð
ℝN

ð
ℝN

f xð Þg yð Þ
x − yj jN−α dxdy

�����
����� ≤ C N , α, pð Þ fk kLp ℝNð Þ gk kLq ℝNð Þ

ð14Þ

(2) For any f ∈ LrðℝNÞ, one has

k1/j·jN−α ∗ f kLsðℝN Þ ≤ CðN , α, rÞk f kLrðℝN Þ

Remark 5. By Lemma 3(1), Lemma 4(1) and Sobolev imbed-
ding theorem, we can get

ð
ℝN

Iα ∗ F uð Þð ÞF uð Þdx
����

����
≤ C F uð Þj j22N/ N+αð Þ

≤ C
ð
ℝN

uj j N+αð Þ/N + uj j N+αð Þ/ N−2ð Þ
� �2N/ N+αð Þ

dx

 � N+αð Þ/N

≤ C
ð
ℝN

uj j2 + uj j2N/ N−2ð Þ
� �

dx

 � N+αð Þ/N

≤ C uk k 2N+2αð Þ/N + uk k 2N+2αð Þ/ N−2ð Þ
� �

:

ð15Þ

3. Variational Formulation

The associated energy function of problem (1) is given by

I uð Þ = 1
2

ð
ℝN

Δuj j2dx + 1
2

ð
ℝN

a ∇uj j2 +V xð Þu2� 

dx

+ b
4

ð
ℝN

∇uj j2dx
� �2

−
1
2

ð
ℝN

Iα ∗ F uð Þð ÞF uð Þdx

−
λ

2∗∗
ð
ℝN

uj j2∗∗dx

ð16Þ

i.e. the critical points of the functional IðuÞ are weak
solutions of problem (1). Under the assumptions, I ∈ C1ðE,
ℝÞ, and for all u, v ∈ E, it holds that
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I ′ uð Þ, v
D E

=
ð
ℝN

ΔuΔvdx + a
ð
ℝN

∇u∇vdx +
ð
ℝN

V xð Þuvdx

+ b
ð
ℝN

∇uj j2dx
ð
ℝN

∇u∇vdx

−
ð
ℝN

Iα ∗ F uð Þð Þf uð Þvdx − λ
ð
ℝN

uj j2∗∗−2uvdx:

ð17Þ

Thus,

I ′ uð Þ, u
D E

=
ð
ℝN

Δuj j2dx +
ð
ℝN

a ∇uj j2 + V xð Þu2� 

dx

+ b
ð
ℝN

∇uj j2dx
� �2

−
ð
ℝN

Iα ∗ F uð Þð Þf uð Þudx

− λ
ð
ℝN

uj j2∗∗dx:

ð18Þ

In this section, we prove the following results.

Lemma 6. The functional IðuÞ possesses the mountain-pass
geometry, i.e.,

(1) There exists ρ, δ > 0 such that IðuÞ ≥ δ for all kuk = ρ

(2) There exists e ∈H2ðℝNÞ such that kek > ρ and IðeÞ
< 0

Proof. (1) By Lemma 3(1) and Lemma 4, we have

I uð Þ = 1
2

ð
ℝN

Δuj j2dx + 1
2

ð
ℝN

�
a ∇uj j2

+ V xð Þu2
dx + b
4

ð
ℝN

∇uj j2dx
� �2

−
1
2

ð
ℝN

Iα ∗ F uð Þð ÞF uð Þdx − λ

2∗∗
ð
ℝN

uj j2∗∗dx

≥ C1 uk k2 − C2 uk k 2N+2αð Þ/N + uk k 2N+2αð Þ/ N−2ð Þ
� �

− C3 uk k2∗∗ :

ð19Þ

Thus, there exists ρ, δ > 0 such that I∞ ≥ δ for all kuk
= ρ > 0 small enough.

(2) For any u ∈ E \ f0g,

I utð Þ = tN−3

2

ð
ℝN

Δuj j2dx + atN−1

2

ð
ℝN

∇uj j2dx

+ tN+1

2

ð
ℝN

V xð Þu2dx + bt2N−2

4

ð
ℝN

∇uj j2dx
� �2

−
tN+α

2

ð
ℝN

Iα ∗ F uð Þð ÞF uð Þdx

−
λ

2∗∗ t
N2+3Nð Þ/ N−4ð Þ

ð
ℝN

uj j2∗∗dx⟶ −∞,

ð20Þ

as t⟶∞, since α >N − 2; thus, we see I∞ðutÞ < 0 for t > 0
large. Note that

utk k2 = tN−3
ð
ℝN

Δuj j2dx + tN−1
ð
ℝN

∇uj j2dx

+ tN+1
ð
ℝN

V xð Þu2dx:
ð21Þ

Taking e = ut0 , with t0 > 0 large, we have kek > ρ and
I∞ðeÞ < 0.

Hence, we define the mountain-pass level of I:

c = inf
γ∈Γ

max
t∈ 0,1½ �

I γ tð Þð Þ > 0, ð22Þ

where Γ = fγ ∈ Cð½0, 1�, EÞ: γð0Þ = 0, Iðγð1ÞÞ < 0g.

Lemma 7. If fung ⊂ E is a ðPSÞc sequence of I, then fung is
bounded in E.

Proof. Let fung ⊂ E be ðPSÞc sequence, i.e., IðunÞ⟶ c and
I ′ðunÞ⟶ 0; then, we have

c = I unð Þ − 1
4 I ′ unð Þ, un
D E

+ o 1ð Þ

= 1
4

ð
ℝN

Δunj j2dx + 1
4

ð
ℝN

a ∇unj j2 +V xð Þu2n
� 


dx

+ 1
4

ð
ℝN

Iα ∗ F unð Þð Þ f unð Þun − 2F unð Þ½ �dx

+ λ

4 −
λ

2∗∗
� �ð

ℝN
unj j2∗∗dx + o 1ð Þ

≥ C4 unk k2:

ð23Þ

Consequently, fung is bounded in E.

Remark 8. By Lemma 7, we can assume that there exists a u
such that

unu in E,  

un ⟶ u in Lsloc ℝN� �
, ∀s ∈ 2,2∗∗½ Þ,

un ⟶ u a:e:onℝN :  

8>><
>>:

ð24Þ

Then, by the similar method as Lemma 3.3 in [4], we can
obtain lim

n⟶∞

Ð
ℝN junj2

∗∗
dx=

Ð
ℝN juj2∗∗dx.

Lemma 9. IðuÞ satisfies ðPSÞ condition.

Proof. Let fung ⊂ E be ðPSÞc sequence, i.e., IðunÞ⟶ c and
I ′ðunÞ⟶ 0; by Lemma 7, fung is bounded in E. Hence,
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up to a subsequence, we may assume that there exists a u
such that

unu in E,  

un ⟶ u in Lsloc ℝN� �
, ∀s ∈ 2,2∗∗½ Þ,

un ⟶ u a:e:onℝN :  

8>><
>>:

ð25Þ

Then, using the lower semicontinuity of the norm,
Brezis-Lieb Lemma [28] and Remark 8, we have

o 1ð Þ unk k = I ′ unð Þ, un
D E

=
ð
ℝN

Δunj j2dx

+
ð
ℝN

a ∇unj j2 +V xð Þu2n
� 


dx + b
ð
ℝN

∇unj j2dx
� �2

−
ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx − λ
ð
ℝN

unj j2∗∗dx

=
ð
ℝN

Δun − Δuj j2dx +
ð
ℝN

�
a ∇ un − uð Þj j2

+V xð Þ un − uj j2
dx +
ð
ℝN

Δuj j2dx +
ð
ℝN

�
a ∇uj j2

+V xð Þu2
dx + b
ð
ℝN

∇unj j2dx
� �2

−
ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx

− λ
ð
ℝN

unj j2∗∗dx + o 1ð Þ

≥ C5 un − uk k2 +
ð
ℝN

Δuj j2dx +
ð
ℝN

�
a ∇uj j2

+V xð Þu2
dx + b
ð
ℝN

∇uj j2dx
� �2

−
ð
ℝN

Iα ∗ F uð Þð Þf uð Þudx − λ
ð
ℝN

uj j2∗∗dx + o 1ð Þ:

ð26Þ

Thus, we can have kun − uk2 ⟶ 0, which implies that
fung strongly converges to u in E. This completes the proof
of Lemma 9.

Remark 10. Now, we recall the Nehari manifold

M≔ u ∈ E \ 0f g: I ′ uð Þ, u
D E

= 0
n o

: ð27Þ

Letm = inf
u∈M

IðuÞ ; then for any u ∈M, we have

I uð Þ = I uð Þ − 1
4 I ′ uð Þ, u
D E

≥ C6 unk k2 ≥ 0: ð28Þ

Hence, m is well defined. Moreover, by the similar
argument as Chapter 4 [29], we have the following charac-
terization:

c = inf
γ∈Γ

max
t∈ 0,1½ �

I γ tð Þð Þ =m = inf
u∈M

I uð Þ: ð29Þ

4. Ground State Solution for Problem (1)

In this section, we prove the main theorem.

Proof of Theorem 11. From Lemmas 6 and 7, we know that
there exists a bounded ðPSÞc sequence fung, that is, IðunÞ
⟶ c =m, I ′ðunÞ⟶ 0. Next, let δ≔ limsup

n⟶∞
sup
y∈ℝN

Ð
B1ðyÞjunj

2

dx. We claim δ > 0. On the contrary, by similar argument
as Lions’ concentration compactness principle, we can proof
un ⟶ 0 in LpðℝNÞ for 2 < p < 2∗∗. By Lemma 3(2), for any
ε > 0, there exists a constant Cε > 0 such that

limsup
n⟶∞

ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx

≤ Climsup
n⟶∞



ε

�ð
ℝN

unj j2dx

+
ð
ℝN

unj j2N/ N−2ð Þdx
�
+ Cε

ð
ℝN

unj jpdx
� N+αð Þ/N

≤ C εC7 + Cεlimsup
n⟶∞

ð
ℝN

unj jpdx

 � N+αð Þ/N

= C εC8ð Þ N+αð Þ/N :

ð30Þ

Note that ε is arbitrary; we get

ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx = o 1ð Þ: ð31Þ

Combining with I ′ðunÞ⟶ 0 and Remark 8, we can get

o 1ð Þ = I ′ unð Þ, un
D E

=
ð
ℝN

Δunj j2dx + a
ð
ℝN

∇unj j2dx

+ b
ð
ℝN

∇unj j2dx
� �2

+
ð
ℝN

V xð Þ unj j2dx

−
ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx−λ
ð
ℝN

unj j2∗∗dx

≥ C9 unk k2 −
ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx

− λ
ð
ℝN

unj j2∗∗dx,

ð32Þ

which implies that

C9 unk k2 ≤
ð
ℝN

Iα ∗ F unð Þð Þf unð Þundx+λ
ð
ℝN

unj j2∗∗dx + o 1ð Þ:

ð33Þ

Then, we have kunk⟶ 0, which implies un ⟶ 0 in E.
We deduce that c = 0, which contradicts to the fact that c > 0.
Hence, δ > 0, and there exists fyng ⊂ℝN such that

Ð
B1ðynÞ

junjpdx ≥ ðδ/2Þ > 0. We set vnðxÞ = unðx + ynÞ; then, kunk =

5Advances in Mathematical Physics



kvnk,
Ð
B1ð0Þjvnj

pdx > δ/2 and IðvnÞ⟶ c =m, I ′ðvnÞ⟶ 0.
Thus, there exists a v0 ≠ 0 such that

vnv0 in E,  

vn ⟶ v0 in Lsloc ℝN� �
, ∀s ∈ 2,2∗∗½ Þ

vn ⟶ v0 a:e:onℝN :  

8>><
>>:

ð34Þ

Then, for any φ ∈ C∞
0 ðℝNÞ, we have 0 = hI ′ðvnÞ, φi +

oð1Þ = hI ′ðv0Þ, φi, which means v0 is a solution of equation
(1).

On the other hand, combining with the Fatou Lemma,
we can obtain

m = I vnð Þ − 1
4 I ′ vnð Þ, vn
D E

+ o 1ð Þ

= 1
4

ð
ℝN

Δvnj j2dx + 1
4

ð
ℝN

a ∇vnj j2 + V xð Þv2n
� 


dx

+ 1
4

ð
ℝN

Iα ∗ F vnð Þð Þ f vnð Þvn − 2F vnð Þ½ �dx

+ λ

4 −
λ

2∗∗
� �ð

ℝN
vnj j2∗∗dx + o 1ð Þ

≥
1
4

ð
ℝN

Δv0j j2dx + 1
4

ð
ℝN

a ∇v0j j2 +V xð Þv20
� 


dx

+ 1
4

ð
ℝN

Iα ∗ F v0ð Þð Þ f v0ð Þv0 − 2F v0ð Þ½ �dx

+ λ

4 −
λ

2∗∗
� �ð

ℝN
v0j j2∗∗dx + o 1ð Þ

= I v0ð Þ − 1
4 I ′ v0ð Þ, v0
D E

+ o 1ð Þ = I v0ð Þ + o 1ð Þ:

ð35Þ

At the same time, we know m = c ≤ Iðv0Þ by the defini-
tion ofm. Then, we can deduce that v0 is a ground state solu-
tion of equation (1). Thus, we complete the proof of
Theorem 11.
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