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ABSTRACT
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1 INTRODUCTION

In 1965, Horadam [1] defined a generalization of Fibonacci sequence, that is, he defined a second-
order linear recurrence sequence {Wn(W0,W1; r, s)}, or simply {Wn}, as follows:

Wn = rWn−1 + sWn−2; W0 = a, W1 = b, (n ≥ 2) (1.1)

where W0,W1 are arbitrary complex numbers and r, s are real numbers, see also Horadam [2], [3]
and [4]. Now these generalized Fibonacci numbers {Wn(a, b; r, s)} are also called Horadam numbers.
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −r

s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

For some specific values of a, b, r and s, it is worth presenting these special Horadam numbers in a
table as a specific name. In literature, for example, the following names and notations (see Table 1)
are used for the special cases of r, s and initial values.

Table 1. A few special case of generalized Fibonacci sequences.

Name of sequence Notation: Wn(a, b; r, s) No in oeis.org: [5]
Fibonacci Fn = Wn(0, 1; 1, 1) A000045

Lucas Ln = Wn(2, 1; 1, 1) A000032
Pell Pn = Wn(0, 1; 2, 1) A000129

Pell-Lucas Qn = Wn(2, 2; 2, 1) A002203
Jacobsthal Jn = Wn(0, 1; 1, 2) A001045

Jacobsthal-Lucas jn = Wn(2, 1; 1, 2) A014551

A Gaussian integer z is a complex number whose real and imaginary parts are both integers, i.e.,
z = a+ ib, a, b ∈ Z. If we use together sequences of integers defined recursively and Gaussian type
integers, we obtain a new sequences of complex numbers such as Gaussian Fibonacci, Gaussian
Lucas, Gaussian Pell, Gaussian Pell-Lucas and Gaussian Jacobsthal numbers; Gaussian Padovan
and Gaussian Pell-Padovan numbers; Gaussian Tribonacci numbers.

Gaussian generalized Fibonacci (Horadam) numbers {GWn}n≥0 = {GWn(GW0, GW1; r, s)}n≥0 are
defined by

GWn = rGWn−1 + sGWn−2 (1.2)

with the initial conditions

GW0 = W0 + (−r

s
GW0 +

1

s
GW1)i, GW1 = W1 +W0i

not all being zero. The sequences {GWn}n≥0 can be extended to negative subscripts by defining

GW−n = −r

s
GW−(n−1) +

1

s
GW−(n−2) = −r

s
GW−n+1 +

1

s
GW−n+2

for n = 1, 2, 3, .... Therefore, recurrence (1.2) holds for all integer n. Note that for n ≥ 0

GWn = Wn + iWn−1

and
GW−n = W−n + iW−n−1.

For some specific values of W0,W1, r and s, it is worth presenting these special Gaussian Horadam
numbers in a table as a specific name. In literature, for example, the following names and notations
(see Table 2) are used for the special cases of r, s and initial values.
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Table 2. A few special case of generalized Gaussian Fibonacci sequences.

Name of sequence Notation: GWn(GW0, GW1; r, s)

Gaussian Fibonacci GFn = GWn(i, 1; 1, 1)
Gaussian Lucas GLn = GWn(2− i, 1 + 2i; 1, 1)
Gaussian Pell GPn = GWn(i, 1; 2, 1)

Gaussian Pell-Lucas GQn = GWn(2− 2i, 2 + 2i; 2, 1)
Gaussian Jacobsthal GJn = GWn(

1
2
i, 1; 1, 2)

Gaussian Jacobsthal-Lucas Gjn = GWn(2− 1
2
i, 1 + 2i; 1, 2)

In this work, we investigate summation formulas of generalized Fibonacci and Gaussian generalized
Fibonacci numbers. Some summing formulas of the Pell and Pell-Lucas numbers are well known and
given in [6], [7], see also [8]. For linear sums of Fibonacci, Tribonacci, Tetranacci, Pentanacci and
Hexanacci numbers, see [9], [10], [11], [12],[13], and [14] respectively.

2 SUMMING FORMULAS OF GENERALIZED FIBONACCI
NUMBERS WITH POSITIVE SUBSCRIPTS

The following Theorem presents some linear summing formulas of generalized Fibonacci numbers
with positive subscripts.

Theorem 2.1. For n ≥ 0 we have the following formulas:

(a) (Sum of the generalized Fibonacci numbers) If r + s− 1 ̸= 0, then

n∑
k=0

Wk =
Wn+2 + (1− r)Wn+1 −W1 + (r − 1)W0

r + s− 1
.

(b) If (r − s+ 1) (r + s− 1) ̸= 0 then

n∑
k=0

W2k =
(1− s)W2n+2 + rsW2n+1 + (s− 1)W2 − rsW1 + (r2 − s2 + 2s− 1)W0

(r − s+ 1) (r + s− 1)

and
n∑

k=0

W2k+1 =
rW2n+2 + (s− s2)W2n+1 − rW2 + (r2 + s− 1)W1

(r − s+ 1) (r + s− 1)
.

(c) If r ̸= 0 ∧ s = 1 then
n∑

k=0

W2k =
W2n+1 −W1 + rW0

r

and
n∑

k=0

W2k+1 =
W2n+2 −W2 + rW1

r
.

Note that (c) is a special case of (b).

Proof.

(a) Using the recurrence relation
Wn = rWn−1 + sWn−2

i.e.
sWn−2 = Wn − rWn−1
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we obtain

sW0 = W2 − rW1

sW1 = W3 − rW2

sW2 = W4 − rW3

...

sWn−2 = Wn − rWn−1

sWn−1 = Wn+1 − rWn

sWn = Wn+2 − rWn+1.

If we add the above equations by side by, we get
n∑

k=0

Wk =
Wn+2 + (1− r)Wn+1 −W1 + (r − 1)W0

r + s− 1
.

(b) and (c) Using the recurrence relation

Wn = rWn−1 + sWn−2

i.e.
rWn−1 = Wn − sWn−2

we obtain

rW3 = W4 − sW2

rW5 = W6 − sW4

rW7 = W8 − sW6

...

rW2n+1 = W2n+2 − sW2n.

rW2n+3 = W2n+4 − sW2n+2

Now, if we add the above equations by side by, we get

r(−W1 +
n∑

k=0

W2k+1) = (W2n+2 −W2 −W0 +
n∑

k=0

W2k)− s(−W0 +
n∑

k=0

W2k)). (2.1)

Similarly, using the recurrence relation

Wn = rWn−1 + sWn−2

i.e.
rWn−1 = Wn − sWn−2

we write the following obvious equations;

rW2 = W3 − sW1

rW4 = W5 − sW3

rW6 = W7 − sW5

rW8 = W9 − sW7

...

rW2n = W2n+1 − sW2n−1

rW2n+2 = W2n+3 − sW2n+1.
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Now, if we add the above equations by side by, we obtain

r(−W0 +

n∑
k=0

W2k) = (−W1 +

n∑
k=0

W2k+1)− s(−W2n+1 +

n∑
k=0

W2k+1)). (2.2)

Then, solving the system (2.1)-(2.2), the required results of (b) and (c) follow.

Taking r = s = 1 in Theorem 2.1 (a) and (b), we obtain the following Proposition.

Proposition 2.1. If r = s = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Wk = Wn+2 −W1.

(b)
∑n

k=0 W2k = W2n+1 −W1 +W0.

(c)
∑n

k=0 W2k+1 = W2n+2 −W2 +W1.

From the above Proposition, we have the following Corollary which gives linear sum formulas of
Fibonacci numbers (take Wn = Fn with F0 = 0, F1 = 1).

Corollary 2.2. For n ≥ 0, Fibonacci numbers have the following properties:

(a)
∑n

k=0 Fk = Fn+2 − 1.

(b)
∑n

k=0 F2k = F2n+1 − 1.

(c)
∑n

k=0 F2k+1 = F2n+2.

Taking Wn = Ln with L0 = 2, L1 = 1 in the last Proposition, we have the following Corollary which
presents linear sum formulas of Lucas numbers.

Corollary 2.3. For n ≥ 0, Lucas numbers have the following properties:

(a)
∑n

k=0 Lk = Ln+2 − 1.

(b)
∑n

k=0 L2k = L2n+1 + 1.

(c)
∑n

k=0 L2k+1 L2n+2 − 2.

Taking r = 2, s = 1 in Theorem 2.1 (a) and (b), we obtain the following Proposition.

Proposition 2.2. If r = 2, s = t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Wk = 1
2
(Wn+2 −Wn+1 −W1 +W0).

(b)
∑n

k=0 W2k = 1
2
(W2n+1 −W1 + 2W0).

(c)
∑n

k=0 W2k+1 = 1
2
(W2n+2 −W2 + 2W1).

From the last Proposition, we have the following Corollary which gives linear sum formulas of Pell
numbers (take Wn = Pn with P0 = 0, P1 = 1).

Corollary 2.4. For n ≥ 0, Pell numbers have the following properties:

(a)
∑n

k=0 Pk = 1
2
(Pn+2 − Pn+1 − 1).

(b)
∑n

k=0 P2k = 1
2
(P2n+1 − 1).

(c)
∑n

k=0 P2k+1 = 1
2
P2n+2.

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last Proposition, we have the following Corollary which
presents linear sum formulas of Pell-Lucas numbers.

Corollary 2.5. For n ≥ 0, Pell-Lucas numbers have the following properties:

(a)
∑n

k=0 Qk = 1
2
(Qn+2 −Qn+1).
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(b)
∑n

k=0 Q2k = 1
2
(Q2n+1 + 2).

(c)
∑n

k=0 Q2k+1 = 1
2
(Q2n+2 − 2).

If r = 1, s = 2 then (r − s+ 1) (r + s− 1) = 0 so we can’t use Theorem 2.1 (b). In other words, the
method of the proof Theorem 2.1 (b) can’t be used to find

∑n
k=0 W2k and

∑n
k=0 W2k+1. Therefore we

need another method to find them which is given in the following Theorem.

Theorem 2.6. If r = 1, s = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Wk = 1
2
(Wn+2 −W1).

(b)
∑n

k=0 W2k = 1
3
(2W2n+2 − 2W2n+1 −W0 + (−W1 + 2W0)n).

(c)
∑n

k=0 W2k+1 = 1
6
(−W2n+2 + 10W2n+1 − 3W1 + 2W0 + (2W1 − 4W0)n).

Proof.

(a) Taking r = 1, s = 2 in Theorem 2.1 (a) we obtain (a).

(b) and (c) (b) and (c) can be proved by mathematical induction.

From the last Theorem we have the following Corollary which gives linear sum formulas of Jacobsthal
numbers (take Wn = Jn with J0 = 0, J1 = 1).

Corollary 2.7. For n ≥ 0, Jacobsthal numbers have the following property:

(a)
∑n

k=0 Jk = 1
2
(Jn+2 − 1).

(b)
∑n

k=0 J2k = 1
3
(2J2n+2 − 2J2n+1 − n).

(c)
∑n

k=0 J2k+1 = 1
6
(−J2n+2 + 10J2n+1 − 3 + 2n).

Taking Wn = jn with j0 = 2, j1 = 1 in the last Theorem, we have the following Corollary which
presents linear sum formulas of Jacobsthal-Lucas numbers.

Corollary 2.8. For n ≥ 0, Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=0 jk = 1
2
(jn+2 − 1).

(b)
∑n

k=0 j2k = 1
3
(2j2n+2 − 2j2n+1 − 2 + 3n).

(c)
∑n

k=0 j2k+1 = 1
6
(−j2n+2 + 10j2n+1 + 1− 6n).

3 SUMMING FORMULAS OF GENERALIZED FIBONACCI
NUMBERS WITH NEGATIVE SUBSCRIPTS

The following Theorem presents some linear summing formulas of generalized Fibonacci numbers
with negative subscripts.

Theorem 3.1. For n ≥ 1 we have the following formulas:

(a) (Sum of the generalized Fibonacci numbers with negative indices) If r + s− 1 ̸= 0, then

n∑
k=1

W−k =
−(r + s)W−n−1 − sW−n−2 +W1 + (1− r)W0

r + s− 1
.
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(b) If (r − s+ 1) (r + s− 1) ̸= 0 then

n∑
k=1

W−2k =
(s− 1)W−2n − rsW−2n−1 + rW1 + (1− s− r2)W0

(r − s+ 1) (r + s− 1)

and
n∑

k=1

W−2k+1 =
−rW−2n + (s2 − s)W−2n−1 + (1− s)W1 + rsW0

(r − s+ 1) (r + s− 1)
.

(c) If r ̸= 0 ∧ s = 1 then
n∑

k=1

W−2k =
1

r
(−W−2n−1 +W1 − rW0)

and
n∑

k=1

W−2k+1 =
1

r
(−W−2n +W0).

Note that (c) is a special case of (b).

Proof.

(a) Using the recurrence relation
W−n+2 = rW−n+1 + sW−n

i.e.
sW−n = W−n+2 − rW−n+1

or
W−n =

1

s
W−n+2 −

r

s
W−n+1

we obtain

sW−n = W−n+2 − rW−n+1

sW−n+1 = W−n+3 − rW−n+2

sW−n+2 = W−n+4 − rW−n+3

...

sW−3 = W−1 − rW−2

sW−2 = W0 − rW−1

sW−1 = W1 − rW0.

If we add the above equations by side by, we get

n∑
k=1

W−k =
(1− r − s)W−n−1 − (r + s)W−n−2 − sW−n−3 +W1 + (1− r)W0

r + s− 1
.

(b) and (c) Using the recurrence relation

W−n+2 = rW−n+1 + sW−n

i.e.
rW−n+1 = W−n+2 − sW−n

7
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we obtain

rW−2n+1 = W−2n+2 − sW−2n

rW−2n+3 = W−2n+4 − sW−2n+2

rW−2n+5 = W−2n+6 − sW−2n+4

...

rW−5 = W−4 − sW−6

rW−3 = W−2 − sW−4

rW−1 = W0 − sW−2.

If we add the above equations by side by, we get

r
n∑

k=1

W−2k+1 = (−W−2n +W0 +
n∑

k=1

W−2k)− s(
n∑

k=1

W−2k). (3.1)

Similarly, using the recurrence relation

W−n+2 = rW−n+1 + sW−n

i.e.
rW−2n = W−2n+1 − sW−2n−1

we obtain

rW−2n = W−2n+1 − sW−2n−1

rW−2n+2 = W−2n+3 − sW−2n+1

rW−2n+4 = W−2n+5 − sW−2n+3

...

rW−4 = W−3 − sW−5

rW−2 = W−1 − sW−3.

If we add the above equations by side by, we get

r

n∑
k=1

W−2k = (

n∑
k=1

W−2k+1)− s(W−2n−1 −W−1 +

n∑
k=1

W−2k+1).

Since
W−1 = (−r

s
×W0 +

1

s
W1)

it follows that

r

n∑
k=1

W−2k = (

n∑
k=1

W−2k+1)− s(W−2n−1 − (−r

s
×W0 +

1

s
W1) +

n∑
k=1

W−2k+1). (3.2)

Then, solving system (3.1)-(3.2) the required result of (b) and (c) follow.

Taking r = s = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.1. If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W−k = −2W−n−1 −W−n−2 +W1.

(b)
∑n

k=1 W−2k = −W−2n−1 +W1 −W0.
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(c)
∑n

k=1 W−2k+1 = −W−2n +W0.

From the above Proposition, we have the following Corollary which gives linear sum formulas of
Fibonacci numbers (take Wn = Fn with F0 = 0, F1 = 1).

Corollary 3.2. For n ≥ 1, Fibonacci numbers have the following properties.

(a)
∑n

k=1 F−k = −2F−n−1 − F−n−2 + 1.

(b)
∑n

k=1 F−2k = −F−2n−1 + 1.

(c)
∑n

k=1 F−2k+1 = −F−2n.

Taking Wn = Ln with L0 = 2, L1 = 1 in the last Proposition, we have the following Corollary which
presents linear sum formulas of Lucas numbers.

Corollary 3.3. For n ≥ 1, Lucas numbers have the following properties.

(a)
∑n

k=1 L−k = −2L−n−1 − L−n−2 + 1.

(b)
∑n

k=1 L−2k = −L−2n−1 − 1.

(c)
∑n

k=1 L−2k+1 = −L−2n + 2.

Taking r = 2, s = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.2. If r = 2, s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W−k = 1
2
(−3W−n−1 −W−n−2 +W1 −W0).

(b)
∑n

k=1 W−2k = 1
2
(−W−2n−1 +W1 − 2W0).

(c)
∑n

k=1 W−2k+1 = 1
2
(−W−2n +W0).

From the last Proposition, we have the following Corollary which gives linear sum formulas of Pell
numbers (take Wn = Pn with P0 = 0, P1 = 1).

Corollary 3.4. For n ≥ 1, Pell numbers have the following properties.

(a)
∑n

k=1 P−k = 1
2
(−3P−n−1 − P−n−2 + 1).

(b)
∑n

k=1 P−2k = 1
2
(−P−2n−1 + 1).

(c)
∑n

k=1 P−2k+1 = − 1
2
P−2n.

Taking Wn = Qn with Q0 = 2, Q1 = 2 in the last Proposition, we have the following Corollary which
presents linear sum formulas of Pell-Lucas numbers.

Corollary 3.5. For n ≥ 1, Pell-Lucas numbers have the following properties.

(a)
∑n

k=1 Q−k = 1
2
(−3Q−n−1 −Q−n−2).

(b)
∑n

k=1 Q−2k = 1
2
(−Q−2n−1 − 2).

(c)
∑n

k=1 Q−2k+1 = 1
2
(−Q−2n + 2).

If r = 1, s = 2 then (r − s+ 1) (r + s− 1) = 0 so we can’t use Theorem 3.1 (b). In other words, the
method of the proof Theorem 3.1 (b) can’t be used to find

∑n
k=0 W2k and

∑n
k=0 W2k+1. Therefore we

need another method to find them which is given in the following Theorem.

Theorem 3.6. If r = 0, s = 2, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 W−k = 1
2
(−3W−n−1 − 2W−n−2 +W1).

(b)
∑n

k=1 W−2k = 1
512

(−213W−n−1 − 214W−n−2 + (73W1 + 70W0) + (−174W1 + 340W0)n).

9
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(c)
∑n

k=1 W−2k+1 = 1
256

(−213W−n−1 − 214W−n−2 + (73W1 + 70W0) + (−172W0 + 82W1)n).

Proof.

(a) Taking r = 1, s = 2 in Theorem 3.1 (a) we obtain (a).

(b) and (c) (b) and (c) can be proved by mathematical induction.

From the last Theorem, we have the following Corollary which gives sum formula of Jacobsthal
numbers (take Wn = Jn with J0 = 0, J1 = 1).

Corollary 3.7. For n ≥ 1, Jacobsthal numbers have the following property:

(a)
∑n

k=1 J−k = 1
2
(−3J−n−1 − 2J−n−2 + J1).

(b)
∑n

k=1 J−2k = 1
512

(−213J−n−1 − 214J−n−2 + 73− 174n).

(c)
∑n

k=1 J−2k+1 = 1
256

(−213J−n−1 − 214J−n−2 + 73 + 82n).

Taking Wn = jn with j0 = 2, j1 = 1 in the last Proposition, we have the following Corollary which
presents sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.8. For n ≥ 1, Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=1 j−k = 1
2
(−3j−n−1 − 2j−n−2 + 1).

(b)
∑n

k=1 j−2k = 1
512

(−213j−n−1 − 214j−n−2 + 213 + 506n).

(c)
∑n

k=1 j−2k+1 = 1
256

(−213j−n−1 − 214j−n−2 + 213− 262n).

4 SUMMING FORMULAS OF GAUSSIAN GENERALIZED
FIBONACCI NUMBERS WITH POSITIVE SUBSCRIPTS

The following Theorem presents some linear summing formulas of Gaussian generalized Fibonacci
numbers with positive subscripts.

Theorem 4.1. For n ≥ 0 we have the following formulas:

(a) (Sum of the generalized Gaussian Fibonacci numbers) If r + s− 1 ̸= 0, then
n∑

k=0

GWk =
GWn+2 + (1− r)GWn+1 −GW1 + (r − 1)GW0

r + s− 1
.

(b) If (r − s+ 1) (r + s− 1) ̸= 0 then
n∑

k=0

GW2k =
(1− s)GW2n+2 + rsGW2n+1 + (s− 1)GW2 − rsGW1 + (r2 − s2 + 2s− 1)GW0

(r − s+ 1) (r + s− 1)

and
n∑

k=0

GW2k+1 =
rGW2n+2 + (s− s2)GW2n+1 − rGW2 + (r2 + s− 1)GW1

(r − s+ 1) (r + s− 1)
.

(c) If r ̸= 0 ∧ s = 1 then
n∑

k=0

GW2k =
GW2n+1 −GW1 + rGW0

r

and
n∑

k=0

GW2k+1 =
GW2n+2 −GW2 + rGW1

r
.

Note that (c) is a special case of (b).

10
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Proof. The proof can be given exactly as in the proof of Theorem 2.1.
Taking r = s = 1 in Theorem 4.1 (a) and (b), we obtain the following Proposition.

Proposition 4.1. If r = s = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 GWk = GWn+2 −GW1.

(b)
∑n

k=0 GW2k = GW2n+1 −GW1 +GW0.

(c)
∑n

k=0 GW2k+1 = GW2n+2 −GW2 +GW1.

From the above Proposition, we have the following Corollary which gives linear sum formulas of
Gaussian Fibonacci numbers (take GWn = GFn with GF0 = i, GF1 = 1).

Corollary 4.2. For n ≥ 0, Gaussian Fibonacci numbers have the following properties:

(a)
∑n

k=0 GFk = GFn+2 − 1.

(b)
∑n

k=0 GF2k = GF2n+1 − (1− i ).

(c)
∑n

k=0 GF2k+1 = GF2n+2 − i.

Taking GWn = GLn with GL0 = 2 − i, GL1 = 1 + 2i in the last Proposition, we have the following
Corollary which presents linear sum formulas of Gaussian Lucas numbers.

Corollary 4.3. For n ≥ 0, Gaussian Lucas numbers have the following properties:

(a)
∑n

k=0 GLk = GLn+2 − (1 + 2i).

(b)
∑n

k=0 GL2k = GL2n+1 + (1− 3i).

(c)
∑n

k=0 GL2k+1 = GL2n+2 + (−2 + i).

Taking r = 2, s = 1 in Theorem 4.1 (a) and (b), we obtain the following Proposition.

Proposition 4.2. If r = 2, s = t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 GWk = 1
2
(GWn+2 −GWn+1 −GW1 +GW0).

(b)
∑n

k=0 GW2k = 1
2
(GW2n+1 −GW1 + 2GW0).

(c)
∑n

k=0 GW2k+1 = 1
2
(GW2n+2 −GW2 + 2GW1).

From the last Proposition, we have the following Corollary which gives linear sum formulas of Gaussian
Pell numbers (take GWn = GPn with GP0 = i, GP1 = 1).

Corollary 4.4. For n ≥ 0, Gaussian Pell numbers have the following properties:

(a)
∑n

k=0 GPk = 1
2
(GPn+2 −GPn+1 − (1− i)).

(b)
∑n

k=0 GP2k = 1
2
(GP2n+1 − (1− 2i)).

(c)
∑n

k=0 GP2k+1 = 1
2
(GP2n+2 − i).

Taking GWn = GQn with GQ0 = 2− 2i, GQ1 = 2 + 2i in the last Proposition, we have the following
Corollary which presents linear sum formulas of Gaussian Pell-Lucas numbers.

Corollary 4.5. For n ≥ 0, Gaussian Pell-Lucas numbers have the following properties:

(a)
∑n

k=0 GQk = 1
2
(GQn+2 −GQn+1 − 4i).

(b)
∑n

k=0 GQ2k = 1
2
(GQ2n+1 + (2− 6i)).

(c)
∑n

k=0 GQ2k+1 = 1
2
(GQ2n+2 − (2− 2i)).

11
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If r = 1, s = 2 then (r − s+ 1) (r + s− 1) = 0 so we can’t use Theorem 4.1 (b). In other words, the
method of the proof Theorem 4.1 (b) can’t be used to find

∑n
k=0 GW2k and

∑n
k=0 GW2k+1. Therefore

we need another method to find them which is given in the following Theorem.

Theorem 4.6. If r = 1, s = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 GWk = 1
2
(GWn+2 −GW1).

(b)
∑n

k=0 GW2k = 1
3
(2GW2n+2 − 2GW2n+1 −GW0 + (−GW1 + 2GW0)n).

(c)
∑n

k=0 GW2k+1 = 1
6
(−GW2n+2 + 10GW2n+1 − 3GW1 + 2GW0 + (2GW1 − 4GW0)n).

Proof.

(a) Taking r = 1, s = 2 in Theorem 4.1 (a) we obtain (a).

(b) and (c) (b) and (c) can be proved by mathematical induction.

From the last Theorem we have the following Corollary which gives linear sum formulas of Gaussian
Jacobsthal numbers (take GWn = GJn with GJ0 = 1

2
i, GJ1 = 1).

Corollary 4.7. For n ≥ 0, Gaussian Jacobsthal numbers have the following property:

(a)
∑n

k=0 GJk = 1
2
(GJn+2 − 1).

(b)
∑n

k=0 GJ2k = 1
3
(2GJ2n+2 − 2GJ2n+1 − 1

2
i− (1− i)n).

(c)
∑n

k=0 GJ2k+1 = 1
6
(−GJ2n+2 + 10GJ2n+1 + (−3 + i) + (2− 2i)n).

Taking GWn = Gjn with Gj0 = 2 − 1
2
i, Gj1 = 1 + 2i in the last Theorem, we have the following

Corollary which presents linear sum formulas of Gaussian Jacobsthal-Lucas numbers.

Corollary 4.8. For n ≥ 0, Gaussian Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=0 Gjk = 1
2
(Gjn+2 − (1 + 2i)).

(b)
∑n

k=0 Gj2k = 1
3
(2Gj2n+2 − 2Gj2n+1 − (2− 1

2
i) + (3− 3i)n).

(c)
∑n

k=0 Gj2k+1 = 1
6
(−Gj2n+2 + 10Gj2n+1 + (1− 7i) + (−6 + 6i)n).

5 SUMMING FORMULAS OF GAUSSIAN GENERALIZED
FIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS

The following Theorem presents some linear summing formulas of Gaussian generalized Fibonacci
numbers with negative subscripts.

Theorem 5.1. For n ≥ 1 we have the following formulas:

(a) (Sum of the generalized Gaussian Fibonacci numbers with negative indices) If r+s−1 ̸= 0, then
n∑

k=1

GW−k =
−(r + s)GW−n−1 − sGW−n−2 +GW1 + (1− r)GW0

r + s− 1
.

(b) If (r − s+ 1) (r + s− 1) ̸= 0 then
n∑

k=1

GW−2k =
(s− 1)GW−2n − rsGW−2n−1 + rGW1 + (1− s− r2)GW0

(r − s+ 1) (r + s− 1)

and
n∑

k=1

GW−2k+1 =
−rGW−2n + (s2 − s)GW−2n−1 + (1− s)GW1 + rsGW0

(r − s+ 1) (r + s− 1)
.

12
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(c) If r ̸= 0 ∧ s = 1 then
n∑

k=1

GW−2k =
1

r
(−GW−2n−1 +GW1 − rGW0)

and
n∑

k=1

GW−2k+1 =
1

r
(−GW−2n +GW0).

Note that (c) is a special case of (b).

Proof. The proof can be given exactly as in the proof of Theorem 3.1.
Taking r = s = 1 in Theorem 5.1 (a) and (b), we obtain the following Proposition.

Proposition 5.1. If r = s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 GW−k = −2GW−n−1 −GW−n−2 +GW1.

(b)
∑n

k=1 GW−2k = −GW−2n−1 +GW1 −GW0.

(c)
∑n

k=1 GW−2k+1 = −GW−2n +GW0.

From the above Proposition, we have the following Corollary which gives linear sum formulas of
Gaussian Fibonacci numbers (take GWn = GFn with GF0 = i, GF1 = 1).

Corollary 5.2. For n ≥ 1, Gaussian Fibonacci numbers have the following properties.

(a)
∑n

k=1 GF−k = −2GF−n−1 −GF−n−2 + 1.

(b)
∑n

k=1 GF−2k = −GF−2n−1 + 1− i.

(c)
∑n

k=1 GF−2k+1 = −GF−2n + i.

Taking GWn = GLn with GL0 = 2 − i, GL1 = 1 + 2i in the last Proposition, we have the following
Corollary which presents linear sum formulas of Gaussian Lucas numbers.

Corollary 5.3. For n ≥ 1, Gaussian Lucas numbers have the following properties.

(a)
∑n

k=1 GL−k = −2GL−n−1 −GL−n−2 + (1 + 2i).

(b)
∑n

k=1 GL−2k = −GL−2n−1 + (−1 + 3i).

(c)
∑n

k=1 GL−2k+1 = −GL−2n + (2− i).

Taking r = 2, s = 1 in Theorem 5.1 (a) and (b), we obtain the following Proposition.

Proposition 5.2. If r = 2, s = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 GW−k = 1
2
(−3GW−n−1 −GW−n−2 +GW1 −GW0).

(b)
∑n

k=1 GW−2k = 1
2
(−GW−2n−1 +GW1 − 2GW0).

(c)
∑n

k=1 GW−2k+1 = 1
2
(−GW−2n +GW0).

From the last Proposition, we have the following Corollary which gives linear sum formulas of Gaussian
Pell numbers (take GWn = GPn with GP0 = i, GP1 = 1).

Corollary 5.4. For n ≥ 1, Gaussian Pell numbers have the following properties.

(a)
∑n

k=1 GP−k = 1
2
(−3GP−n−1 −GP−n−2 + 1).

(b)
∑n

k=1 GP−2k = 1
2
(−GP−2n−1 + 1).

(c)
∑n

k=1 GP−2k+1 = − 1
2
GP−2n.

13
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Taking GWn = GQn with GQ0 = 2− 2i, GQ1 = 2 + 2i in the last Proposition, we have the following
Corollary which presents linear sum formulas of Gaussian Pell-Lucas numbers.

Corollary 5.5. For n ≥ 1, Gaussian Pell-Lucas numbers have the following properties.

(a)
∑n

k=1 GQ−k = 1
2
(−3GQ−n−1 −GQ−n−2 + 4i).

(b)
∑n

k=1 GQ−2k = 1
2
(−GQ−2n−1 − (2− 6i)).

(c)
∑n

k=1 GQ−2k+1 = 1
2
(−GQ−2n + (2− 2i)).

If r = 1, s = 2 then (r − s+ 1) (r + s− 1) = 0 so we can’t use Theorem 5.1 (b). In other words, the
method of the proof Theorem 5.1 (b) can’t be used to find

∑n
k=0 GW2k and

∑n
k=0 GW2k+1. Therefore

we need another method to find them which is given in the following Theorem.

Theorem 5.6. If r = 0, s = 2, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 GW−k = 1
2
(−3GW−n−1 − 2GW−n−2 +GW1).

(b)
∑n

k=1 GW−2k = 1
512

(−213GW−n−1−214GW−n−2+(73GW1+70GW0)+(−174GW1+340GW0)n).

(c)
∑n

k=1 GW−2k+1 = 1
256

(−213GW−n−1 − 214GW−n−2 + (73GW1 + 70GW0) + (−172GW0 +
82GW1)n).

Proof.

(a) Taking r = 1, s = 2 in Theorem 5.1 (a) we obtain (a).

(b) and (c) (b) and (c) can be proved by mathematical induction.

From the last Theorem, we have the following Corollary which gives sum formula of Gaussian Jacobsthal
numbers (take GWn = GJn with GJ0 = 1

2
i, GJ1 = 1).

Corollary 5.7. For n ≥ 1, Gaussian Jacobsthal numbers have the following property:

(a)
∑n

k=1 GJ−k = 1
2
(−3GJ−n−1 − 2GJ−n−2 + 1).

(b)
∑n

k=1 GJ−2k = 1
512

(−213GJ−n−1 − 214GJ−n−2 + (73 + 35i) + (−174 + 170i)n).

(c)
∑n

k=1 GJ−2k+1 = 1
256

(−213GJ−n−1 − 214GJ−n−2 + (73 + 35i) + (82− 86i)n).

Taking GWn = Gjn with Gj0 = 2 − 1
2
i, Gj1 = 1 + 2i in the last Proposition, we have the following

Corollary which presents sum formulas of Gaussian Jacobsthal-Lucas numbers.

Corollary 5.8. For n ≥ 1, Gaussian Jacobsthal-Lucas numbers have the following property:

(a)
∑n

k=1 Gj−k = 1
2
(−3Gj−n−1 − 2Gj−n−2 + (1 + 2i)).

(b)
∑n

k=1 Gj−2k = 1
512

(−213Gj−n−1 − 214Gj−n−2 + (213 + 111i) + (506− 518i)n).

(c)
∑n

k=1 Gj−2k+1 = 1
256

(−213Gj−n−1 − 214Gj−n−2 + (213 + 111i) + (−262 + 250i)n).

6 CONCLUSION

In this work, a number of linear and a few
non-linear sum identities were discovered and
proved. The method used in this paper
can be used for the other linear recurrence
sequences, too. We have written linear sum
identities in terms of the generalized Fibonacci
sequence, and then we have presented the
formulas as special cases the corresponding

identity for the special cases of the generalized
Fibonacci Gaussiann generalized Fibonacci
sequences such as Fibonacci-Lucas sequence
and Gaussian Fibonacci-Lucas sequence.

All the listed identities may be proved by
induction, but that method of proof gives no
clue about their discovery. We give the proofs
to indicate how these identities, in general,
were discovered. Recently, there have been
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so many studies of the sequences of numbers
in the literature and the sequences of numbers
were widely used in many research areas,
such as architecture, nature, art, physics and
engineering. See, for example, the articles [15],
[16].

Our next publication will be about summation
formulas for generalized Tribonacci and Gaussian
generalized Tribonacci numbers using similar
methods of this paper. Also we plan to investigate
summation formulas for generalized Tetranacci,
Gaussian generalized Tetranacci numbers
and for generalized Pentanacci, Gaussian
generalized Pentanacci numbers.
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