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ABSTRACT

The purpose of this study is to explore the simple Markov and Hidden Markov models with
continuous time to investigate disease progression of HIV/AIDS patients under ART follow-up at
Shashemene Referral Hospital, Ethiopia. The msm R package is used for the analysis. Results
from the simple Markov model reveals that the disease progression of the HIV/AIDS patients
considered tend to move towards the healthier than the worse state. The mean waiting time for
the healthiest state is significantly higher than the other transient states. The total length of time
stay in a state declines with severity of the disease stages. Analysis of the misclassification model
provides transition rates of the true states. Estimation of the transition rates of the true states are
found to be relatively smaller compared to those obtained by the simple Markov model. For
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the true states compared to observed ones, the conditional probability of moving to the healthiest
state from the next worse state grows higher dramatically, while that of moving to next worst state
grows slightly lower. The ART based patient care might have positive impacts on the overall
progression of the disease. For covariate effects, male patient is more likely to move to worse state
than the female does. But age of patient is not significant. The progression of the underlying states
of the HIV/AIDS disease behaves similar to that of the generated markers observations except the
turning points of the conditional probabilities. The turning points so interesting for be studied further.

Keywords: CD4 count; disease progression; markov model; misclassification; transition rate.

1 INTRODUCTION

Progression of HIV/AIDS disease of the patient
can be modeled as Markov process allowing
transitions of stages from one to another through
time. The time of the transition are assumed
random. The data may contain measurement
errors. This paper focuses on the disease
progression of HIV infected individuals under
ART with longitudinal observations of their CD4
counts and respective follow-up times.

By categorizing the CD4 counts in to four disease
stages based on WHO disease classification
intervals [1] finite number of states can be defined
so that progression of the disease would be
modelled as Markov process. The process with
continuous time leads to continuous time Markov
models.

Hidden Markov model assumes that the true
disease stages are hidden (unobservable). The
true disease stages can only be observed
indirectly through disease marker which is CD4
count. The observations generated are assumed
to be conditionally independent given the true
stages. Many researchers see [2, 3, 4, 5]
used CD4 counts as observed markers of the
disease progression of HIV-infected patients.
The main parameters of interest are transition
rates, misclassification matrix, and regression
parameters for the covariates.

Hidden Markov model is commonly used in
areas such as speech and signal processing [6].
In this paper, continuous time hidden Markov
models are explored to investigate the HIV/AIDS
diseases progression. Transition rates among
disease stages and misclassification between
the true and observed disease stages are
estimated. The functional of these parameters

such as waiting times and conditional transition
probabilities are computed. Covariate effects are
also determined.

2 DATA

The data are obtained from n = 354 randomly
selected HIV/AIDS patients, who had been
under ART follow-up at the Shashemene
Referral Hospital, Ethiopia, during January
2006 to December 2012. The patients are
of ages 16 years and above. The data are
measurements of CD4 counts per mm3 of blood a
sample, observation times and individual specific
covariates. Patient’s visiting times are assumed
to be irregular with different number of follow-up
time points.

The five disease stages are: state 1 (CD4 count
> 500); state 2 (350 < CD4 count ≤ 500); state
3 (200 < CD4 count ≤ 350); state 4 (CD4 count
≤ 200); and state five (Death). The data consists
of transitions from one good state to another,
transitions to the absorbing state. Death is taken
as the fifth state and it is an absorbing state
of the process. We consider the last follow-
up time of the patient as a current time. Two
covariates considered are sex (0 female, 1 male)
with proportions 0.585 and 0.415 respectively
and age (in months) of the patient.

Bayesian joint models that combines linear mixed
effects for the longitudinal outcomes (square
root of CD4 cell counts) and the parametric
accelerated failure time distributions for the time-
to-death data have been developed and studied
for this data set in [7, 8]. Here hidden states
that generate the observations are considered.
Using continuous time hidden Markov model,
transition rates, misclassification between true
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and observed disease states, waiting time in
states, conditional transition probabilities are
estimated. Effects of the covariates are also
determined.

3 STATISTICAL MODEL

The observations are CD4 counts for HIV infected
patients on ART treatment at follow-up time t.
States of the Markov process are defined by
the seriousness of the sickness based on the
CD4 counts in cells/microliter. We consider
these states as observations of the disease
process and based on this observations two
types of models are emerged. We assume
the observation times are non informative as
described by [9].

We first study the simple Markov model which
is termed as a homogeneous continuous-time
Markov model. Then follows the continuous time
hidden Markov model for misclassification. In the
simple Markov Model, we consider the observed
states are exactly the same as the true states of
the disease, while in the misclassification model
we consider the observed states are generated
by the underlying true states of the disease. In
both cases, the Markov models are of five states.

3.1 Simple Markov Model

The disease progression follows a five-state
Markov chain in continuous time and transitions
are allowed for adjacent disease stages. It is
assumed that the process allows transitions of a
disease state to adjacent states and also direct
transition to the absorbing state. See Fig. 1.
The states of disease process modelled as a
homogeneous continuous-time Markov process,
with a transition intensity matrix Q. The intensity
represents the instantaneous risk of moving from
state r to state s:

qrs(t,X(t)) = lim
t→0

P (κt+δt = s|κt = r)
δt

(3.1)

Q =


q11 q12 0 0 q1d
q21 q22 q23 0 q2d
0 q32 q33 q34 q3d
0 0 q43 q44 q4d
0 0 0 0 0


Each row of the transition intensity Q sums to
zero, so that the diagonal elements are qrr =
−
∑
r,s

qrs

Fig. 1. General model for disease progression

3.2 Likelihood of the Observation Process
The data for individual i consist of a series of times (ti1, . . . , tTi ) and corresponding states (κi1, . . . ,κTi ).
These states are the values of categorization of continuous marker values of CD4 counts. The
likelihood contribution of an individual [10] is given as:
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Li (κi |Q) = f (κi |Q) = f (κi1, . . . ,κiTi ) = f (κit1 )
Ti∏

tj=t2

f (κitj |κitj−1 ) (3.2)

where P 1 = f (κit1 ) is the initial state distribution
and f (κitj |κitj−1 ) is the (κitj−1 ,κitj ) element of the
transition probability matrix which is computed at
time intervals (tj−1,tj ). The transition probability
matrix P (u,t + u) = P (t) are solved by the matrix
exponential of Q scaled by the time interval,
P (t) = exp(tQ).

If the last observation of an individual state is
κTi is the death, the state measured with out
error and whose entry time is known, then the
likelihood contribution is summed over the states
m ∈ {1,2,3,4} on the previous instant before
death:

LD =
∑
m,D

Pκtj ,m
(tj+1 − tj )qm,D (3.3)

The full likelihood is then the product of
probabilities of transition between observed
states, over all individuals i and observation
times t :

L(Q) =
∏
i

Li (κi |Q) (3.4)

The likelihood L(Q) is maximized in terms of
log(qrs) to compute estimates of qrs, using
standard optimization algorithms that is not
analytic solution but use numerical methods.

Mean sojourn times will be extracted for transient
states from the estimated transition rates. The
initial state distribution in Equation (3.2) is not
estimated from the msm Package for this model
and we take the proportion of individuals in
transient states at ART initiation t1.

The estimate of the transition rate Q may be
affected by the covariate and the transition
probability of the model with covariate effects
is P(t, X(t)). The covariate can be individual
specific and/or time varying and they are
measured at all time points of the response. In
time varying covariates considered constant in
between two time intervals and have an effect in
the previous time tj−1. Explanatory variables can
be included at each level of the model through
generalized regressions. A form of a proportional
hazards model described in [11, 12], where the
transition intensity matrix elements qrs(t) at time t

to covariates X(t).

qrs(X(t)) = q
(0)
rs exp(β

′
rsX(t)) (3.5)

where q
(0)
rs is the baseline intensity, βrs is

regression coefficient. Maximum likelihood
estimates for baseline intensities and regression
coefficients can be obtained from the msm
package for R statistical software.

From the estimated transition intensity matrix Q it
is of interest to estimate

• The mean sojourn times:- the average
period in a single stay in each transient
state. It is estimated by the diagonal
entries of the transition rate −1/qrr

• The total length of stay:- which is defined
as the expected amount of time spent by
a subject in each state during the study
period.

3.3 Continuous Time Hidden
Markov Model

The observations in longitudinal disease states
that represent the underling true disease stages
which are not directly observed. The underling
disease model assumed to be Markov chain
and observations are conditionally independent
given the underling true disease states. The
underling disease stages are governed by
Markov transition probability matrix P (t) for a
given time t, which are the matrix exponential
of the transition rate Q. The likelihood function
linking the observations with the underling true
disease state is arbitrary distribution based on
observations.

3.3.1 Misclassification model

In this model the observations are κcit ∈ {1, . . . , s}
where s is the number of states generated
by hidden states κit . The observations are
assumed conditionally independent. The general
description of hidden Markov model in continuous
time for the misclassification model is displayed in
Fig. 2.
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Fig. 2. General description of hidden Markov model in continuous time for misclassification
model

The series of observations of an individual patient i is denoted by κci = (κci1, . . . ,κ
c
iTi

). The likelihood
for observed categorical variable is

f (κci ) = f (κci1, . . . ,κ
c
iTi

) =
∑
κi

f (κci1, . . . ,κ
c
iTi
|κi1, . . . ,κiTi )f (κi1, . . . ,κiTi )

=
∑
κi

Ti∏
ti=t1

f (κciti |κiti )×

f (κi1)
Ti∏

ti=t2

f (κiti |κiti−1)


(3.6)

where the sum is taken over all possible paths
of underlying states κi = κi1, . . . ,κiTi . The
observations are assumed to be independent
given the series of underling states and governed
by time invariant misclassification probability
matrix E. The err are the diagonal elements of the
misclassification probability matrix E represents
the correct classification of individuals in the true
disease stages. We assume that the disease
stages misclassified in to adjacent disease
stages so that the misclassification matrix is 3-
band matrix.

E =


e11 e12 0 0 0
e21 e22 e23 0 0
0 e32 e33 e34 0
0 0 e43 e44 0
0 0 0 0 0


The misclassification probability ers represents
the probability that state s is observed given that
the true one is r. The misclassification of the
disease stages can be affected by the covariates
and to investigate explanatory variables X(t) for
the probability ers of misclassification as state s
given underlying state r, a multinomial logistic
regression model can be used [10]: with baseline

state so.

log

(
ers(t)
erso (t)

)
= β′rsX (3.7)

This is the multinomial logit model with regression
coefficients βrs.

Model parameters are estimated using maximum
marginal likelihood method with numerical
computations in the msm R package. In
continuous time Markov model the state
transitions are governed by the exponential
of the matrix of transition rates. Fitting the
Markov model in continuous time may be an
advantageous to estimate rates from the data
and then transform these in to probabilities of
transition over a period of time.

The analysis is conducted using the msm R
package [13]. The package is written to fit multi-
state Markov models in continuous time with
or without classification error. It is capable of
estimating any form of Markov transition intensity
matrix and misclassification matrix, with any
number of covariates on either of transition rate
and misclassification matrices.

High dimensional optimization will produce
flat likelihood surfaces if there is insufficient
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information in the data, leading to failure
of convergence. In such cases, simplified
models might be constructed with some
unstable parameters fixed at values obtained
from prior information. In applications to
disease progression, adjacent states can often
be combined to simplify the model. Some
adjustments to the numerical methods may also
aid convergence for weakly identifiable models
[13, 10].

4 RESULTS AND DISCUSSION

From the summary of the transitions data, it is
observed that there are 4 deaths among patients
in state 1, 8 deaths from state 2, 4 deaths from
state 3 and 5 deaths from state 4. The proportion
of observed states displayed in Table 1 shows
(in brackets) that there high transitions from state
to itself. The lower diagonal percentages are
relatively higher than the upper once. This shows
the individual patients drift towards the healthy
state because individuals are in ART treatment.

In our model, we assumed that the transition
occurs between adjacent disease states in a
short period of time and death from any state. But
from the frequency table we see that there are
jumps of transitions to outer diagonal elements,
for example, 20 transitions from state 1 to state
3 and 8 transitions from state 1 to state 4. This
indicates that an individual may have a transition
to adjacent states and reach state 3 or 4 within
the interval of follow-up time.

4.1 Analysis of the Simple
Markov Model

In this model we consider the observed disease
states as directly observed true states of the
process. The parameters for this model are

the transition intensity matrix Q and initial state
distribution P 1. The initial state distribution for
the model can be estimated from the proportion
of states at t1 for all individual starting ART
treatment follow-up.

At the start, individuals are at highest risk to be in
state 4 (P= 0.715) and lowest risk to be in state 1
(P=0.006). The algorithm is initiated in a variety
of realistic points and results for the estimated
transition rates with 95% confidence intervals are
given in Table 2.

From the estimated values of the transition rate
we found that the lower diagonals are relatively
higher than the upper ones. The ratio of the
elements in the transition rate help us to make
comparisons for which transitions are more likely
to occur. For example, a patient at state 2 is
10.5% more likely to be in a better state than in a
worse state, and given in state 3, it is 143% more
likely to be in a better state than worse state.
Similarly, given being in state 4, it is highly likely
to be in state 3 than to in death.

The rate of transition from any transient disease
state to the next worse state (or to the death
state) is the highest when the patients are in
state 2. All the rates are significant at α = 5%
significance level.

The average waiting times (Sojourn times) is
given in Table 3.

From the estimated sojourn times, mean time
spent in the healthy state is the highest and mean
time spent in the worst states are found to be
equal.

The total length of stay, in years is declining with
severity of the disease for state 1 (27.27yr), for
state 2 (14.5yr), for state 3 (11.2yr), for state 4
(3.8yr).

Table 1. Frequency counts and proportions of the transitions of the observed states

from/ to State 1 State 2 State 3 State 4 State 5
State 1 329 (0.763) 70 (0.162) 20 (0.046) 8 (0.019 ) 4 (0.009)
State 2 145 (0.337) 177 (0.412) 90 (0.209) 10 (0.023) 8 (0.019)
State 3 71 (0.109) 191 (0.292) 313 (0.479) 75 (0.115) 4 (0.006)
State 4 27 (0.046) 62 (0.105) 218 (0.370) 277 (0.470) 5 (0.008)
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Table 2. The estimated transition intensities for the simple Markov model

Q Estimate 95% CI
q11 -0.051 (-6.35e-02, -0.041)
q12 0.050 ( 3.98e-02, 0.062)
q15 0.001 ( 2.57e-04, 0.005)
q21 0.090 ( 7.69e-02, 0.106)
q22 -0.175 (-2.00e-01, -0.153)
q23 0.082 ( 6.59e-02, 0.101)
q25 0.003 ( 1.10e-03, 0.008)
q32 0.105 ( 9.09e-02, 0.121)
q33 -0.148 (-1.68e-01, -0.131)
q34 0.043 ( 3.39e-02, 0.055)
q35 0.001 ( 6.01e-06, 0.038)
q43 0.125 ( 1.09e-01, 0.145)
q44 -0.126 (-1.45e-01, -0.109)
q45 0.001 ( 4.05e-06, 0.052)

Table 3. Sojourn times estimated for the simple Markov model in months

estimates SE L U
State 1 19.601 2.189 15.748 24.396
State 2 5.717 0.386 5.008 6.526
State 3 6.750 0.425 5.966 7.637
State 4 7.972 0.571 6.928 9.173

The transition probability is computed as a matrix
exponential of the transition intensity matrix. The
model have the ability to compute the transition
probability from the transition rate for patients at
any point in time. For example, the transition
probability matrix for the model for 24 months
time points are given Table 4.

From the results of the 2 year transition
probability, there is a highest probability to move
to death given that the patient is in state 2. From
the fitted transition probability we can compute
the estimated survival probabilities from each
state. The fitted survival probabilities is given in
Fig. 3. The probabilities are declining over
time.

The conditional probabilities for disease
progression for 200 months are displayed in
Fig. 4. The conditional probability of staying
in the given state decreases with increasing

time and relatively high when patients are in
the healthy state. The conditional probability of
the transition in to the next worst state slightly
increases and reach optimum points at months
34, 11 and 12 and decreases for states {1,
2, 3}. Relatively the probability is higher from
state 2 up to the intersection point with the
transition from state 1. The transition to the
next better state increases for all states and
reach optimum at time points 34, 11 and 12
months and decrease for states {2, 3, 4}. The
transitions to the next better state for individuals
in state 4 is relatively higher for the first 11
month treatments. the probability increases
highly and reach maximum and decrease. The
turning point of the probabilities need attentions
of health workers that they should give attention
and special patient care for the individuals.
These results are consistent with those found
in [2] except there is some irregularities near the
turning points.
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Table 4. Transition probability at time of 24 months estimated from the transition intensity
based on the simple model

from/ to State 1 State 2 State 3 State 4 State 5
State 1 0.551 0.238 0.141 0.036 0.035
State 2 0.431 0.254 0.205 0.068 0.042
State 3 0.327 0.263 0.270 0.110 0.031
State 4 0.241 0.254 0.319 0.162 0.023
State 5 0.000 0.000 0.000 0.000 1.000
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Fig. 3. Fitted survival probabilities based on the simple Markov model
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Probability that each state is next:- extracts
the matrix of probabilities −qrs/qrr that the next
state is state s given that the current is r.
The result shows that there is high transition
towards the recovery than moving to worth state.
This is an implication of individuals in ART
treatment recover through time and their CD4
count increase through time.

This shows as an individual in state 1 is with
high probability 98% will be in state 2. When an
individual is in state 2 it is approximately equal
probability to make a transition in to state 1 and
state 3. The relative transition from state 3 is
highly to state 2 with 71% and from state 4 the
relative transition is 99% to move to state 3.

The observed and expected prevalences are
plotted for each state in Fig. 5. The graph
displays the number of individuals initially in high
risk classes about 24% and 71% of them in state
3 and 4 and then declines over time. For state
1 and state 2, the prevalence starts at low rates
and increase over time and then decline. For the
death state the prevalence increase through out.
There is some mismatch between the observed
and expected prevalences in all states.

4.2 Covariate Effects on
Transition Rates

The transition rates in the model can be affected
by the covariate and msm package can have
the ability to fit the covariate effect on the
transition rate. The covariates included here are
gender(male and female) and Age(continuous
and varies with time) of the patient. The covariets
can be individual specific or time varying. The

time homogeneous assumption in the transition
rate may no longer applicable due to time varying
covariate. The estimated transition rate and the
coefficients of the effects of each covariate for
each transition rate is given Table 6.

The hazard ratio computed in the model can
able to identify which covariates are significant
at 5% level. The effect of the covariate gender
is significant for transition intensities to the better
states. The covariate age is not significant. This
may be an indicative to assess the effect of age
in different age groups.

The mean sojourn times in Table 8 show that
females have longer mean sojourn times (20.0
with se 9.8 months) than males (17.1 with se 9.7)
to stay in the healthiest state 1. The difference
are insignificant.

4.3 Analysis of the Misclassifica-
tion Model

Observed states are considered to be the
out put of the underling disease stages and
generated by some arbitrary distribution. The
model parameters of the prior model is initial
state distribution, the transition rate and
the misclassification probability matrix. The
parameter estimation is based on the maximum
likelihood by numerical method, using msm
package for R statistical software. The algorithm
is initiated in a variety of realistic points and the
estimates are given in Table 9. The results for
the transition rates refer to the true states of the
process that are unobserved.

Table 5. The estimated probability that each state is next with 95% confidence interval based
on the simple Markov model

from/ to State 1 State 2 State 3 State 4 State 5

State 1 0 0.98 0 0 0.02
(0.90, 0.99) (0.00, 0.10)

State 2 0.52 0 0.47 0 0.02
(0.45, 0.58) (0.40, 0.53) (0.00, 0.05)

State 3 0 0.71 0 0.29 0.00
(0.55, 0.76) (0.21, 0.35) (0.00, 0.22)

State 4 0 0 0.99 0 0.00
(0.73, 0.99) (0.00, 0.27)

State 5 0 0 0 0 0
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Fig. 5. The observed and expected prevalence based on the simple Markov model.

Table 6. The estimated transition intensities and coefficients of the covariates on transition
rates with 95% confidence interval based on the simple Markov model

Q Estimate 95% CI Gender Age in months
q11 -0.052 (-6.51e-02, -0.041)
q12 0.051 (4.07e-02, 0.064) 1.185 (7.25e-01, 1.94e+00) 0.999 (0.973, 1.025)
q15 0.001 (4.88e-05, 0.007) 0.109 (3.76e-04, 3.13e+01) 1.065 (0.976, 1.161)
q21 0.088 (7.46e-02, 0.104) 0.690 (4.88e-01, 9.76e-01) 0.994 (0.976, 1.011)
q22 -0.175 (-2.00e-01, -0.152)
q23 0.084 (6.74e-02, 0.104) 0.894 (5.80e-01, 1.38e+00) 0.985 (0.961, 1.009)
q25 0.003 (7.70e-04, 0.010) 1.164 (8.41e-02, 1.61e+01) 1.025 (0.955, 1.099)
q32 0.106 (9.19e-02, 0.123) 0.576 (4.23e-01, 7.83e-01) 0.995 (0.980, 1.010)
q33 -0.152 (-1.73e-01, -0.134)
q34 0.045 (3.54e-02, 0.058) 0.737 (4.49e-01, 1.21e+00) 0.979 (0.955, 1.005)
q35 0.0004 (4.50e-07, 0.368) 1.269 (5.27e-09, 3.05e+08) 0.958 (0.532, 1.724)
q43 0.131 (1.13e-01, 0.152) 0.659 (4.83e-01, 9.00e-01) 0.993 (0.977, 1.008)
q44 -0.131 (-1.52e-01, -0.113)
q45 0.001 (3.18e-06, 0.086) 3.347 (8.29e-05, 1.35e+05) 0.947 (0.664, 1.350)

The estimated initial state distribution illustrated
in Table 10 shows individuals initially at high
risk classes approximately 68.9% in state 4 and
28.6% for individuals in state 3. The initial state
distribution in states 1 and 2 are very small.
These results are approximately the same as the
estimates from the simple Markov model. From
the estimated values of the transition rates Q,
we found that the lower diagonals are relatively
higher than the upper once. This shows individual
patients initially in high risk classes drift towards

to healthy state through time because patients
are in ART treatment. The estimated values of
the transition rate in the miscalssification model
is relatively small compared with the estimates
from the simple model.

From the estimated values of the
misclassification matrix E, state 1 and state
4 are well classified, state 2 is misclassified
to state 1 with probability 0.196 and to state
3 with probability 0.144. Similarly state 3 is
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misclassified to state 2 with probability 0.074
and to state 4 with probability 0.126. The highest
misclassification is found to be from state 2 to
state 1.

The mean time spent in the healthy state is
relatively very high 14.33 years and in the worse
states are found to be small and relatively equal.
The mean time spent for misclassificaton model
is very high compared to the estimates based on
the simple model.

The estimates of the total length of stay in years
is for state 1 (44.9yr), for state 2 (5.6yr), for state
3 (2yr), for state 4 (0.2yr). It is the highest for
the healthy state and declines with severity of the
disease stages. The total length of stay in this
model for states {2, 3, 4} is relatively very small
with the estimates from the simple model.

The conditional probabilities for disease
progression upto 200 months is given in the

following Fig. 6. Survival probabilities are
plotted for up to 600 months. In the graph the
conditional probability of staying in the given
state is decrease with time and relatively high
when patients are in the healthy state. The
conditional probability of the transition in to the
next worst state is slightly increase with time and
relatively state 2 the transition increase highly
and decrease with time. The transition to the
next better state is increase for all states and
for individuals in state 4 the probability increase
highly and reach maximum and decrease.

4.4 Covariate Effects on
Misclassification Probabilities

The effect of the explanatory variables on
the misclassification probabilities is evaluated
and the estimates of the transition rate, initial
distribution, miscalssification matrix and the
coefficients of the covariets are give in Table 12.

Table 7. The estimated hazard ratios for the covariates for the simple Markov model

Gender Age in months
Q HR L U HR L U
q12 1.185 7.25e-01 1.94e+00 0.999 0.973 1.025
q15 0.109 3.76e-04 3.13e+01 1.065 0.976 1.161
q21 0.690 4.88e-01 9.76e-01 0.994 0.976 1.011
q23 0.894 5.80e-01 1.38e+00 0.985 0.961 1.009
q25 1.164 8.41e-02 1.61e+01 1.025 0.955 1.099
q32 0.576 4.23e-01 7.83e-01 0.995 0.980 1.010
q34 0.737 4.49e-01 1.21e+00 0.979 0.955 1.005
q35 1.269 5.27e-09 3.05e+08 0.958 0.532 1.724
q43 0.659 4.83e-01 9.00e-01 0.993 0.977 1.008
q45 3.347 8.29e-05 1.35e+05 0.947 0.664 1.350

Table 8. Mean sojourn times for females and males

Females Males
estimates SE L U estimates SE L U

State 1 20.035 9.829 7.659 52.408 17.134 9.694 5.653 51.935
State 2 3.533 1.084 1.936 6.447 4.439 1.525 2.264 8.705
State 3 3.723 0.978 2.225 6.228 5.734 2.371 2.549 12.895
State 4 4.996 1.423 2.859 8.729 7.105 6.789 1.092 46.235
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Table 9. The estimated transition rates and misclassification probability matrix with 95%
confidence intervals based on the misclassification model

Q Estimate 95% CI E Estimate 95% CI
q11 -0.005 (-1.66e-02, -0.002) e11 0.933 (0.877, 0.965)
q12 0.004 (9.65e-04, 0.018) e12 0.067 (0.035, 0.123)
q15 0.001 (1.91e-04, 0.006)
q21 0.030 (2.28e-02, 0.040) e21 0.196 (0.130, 0.286)
q22 -0.053 (-7.05e-02, -0.039) e22 0.659 (0.532, 0.767)
q23 0.020 (1.17e-02, 0.034) e23 0.145 (0.093, 0.218)
q25 0.002 (9.92e-04, 0.006)
q32 0.063 (5.05e-02, 0.078) e32 0.074 (0.036, 0.145)
q33 -0.071 (-9.00e-02, -0.057) e33 0.800 (0.650, 0.896)
q34 0.009 (3.14e-03, 0.023) e34 0.126 (0.080, 0.193)
q35 0.0003 (7.35e-06, 0.015)
q43 0.084 (6.71e-02, 0.105) e43 0.054 (0.019, 0.143)
q44 -0.085 (-1.06e-01, -0.068) e44 0.946 (0.857, 0.981)
q45 0.001 (2.68e-04, 0.005)

Table 10. The estimated initial state occupancy probabilities for misclassification model

Estimate LCL UCL
State 1 0.006 0.001 0.031
State 2 0.019 0.005 0.072
State 3 0.286 0.220 0.360
State 4 0.689 0.607 0.749
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Fig. 6. The conditional probabilities of state transitions and fitted survival probabilities based
on the misclassification model
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Table 11. Mean sojourn times for misclassification model

estimates SE L U
State 1 172.4 88.03 63.35 469.0
State 2 17.3 2.60 12.84 23.2
State 3 13.4 1.57 10.62 16.8
State 4 11.8 1.22 9.62 14.4

Table 12. The estimated transition rate, misclassification probability matrix and coefficients
of the covariates on the misclassification with 95% confidence intervals based on the

misclassification model

Q Estimate/95% CI E Estimate Gender Age in months

q11
-0.005

e11
0.926

(-1.70e-02, -0.001) (0.860, 0.962)

q12
0.002

e12
0.074 2.414 1.021

(2.56e-04, 0.023) (0.038, 0.140) (0.813, 7.168) (0.963, 1.083)

q15
0.002

(7.61e-04, 0.008)

q21
0.028

e21
0.196 0.438 0.953

(2.09e-02, 0.039) (0.121, 0.301) (0.213, 0.899) (0.915, 0.992)

q22
-0.050

e22
0.652

(-6.70e-02, -0.037) (0.515, 0.768)

q23
0.020

e23
0.152 2.071 1.008

(1.19e-02, 0.033) (0.094, 0.237) (0.985, 4.354) (0.970, 1.049)

q25
0.002

(3.59e-04, 0.008)

q32
0.063

e32
0.060 0.607 0.925

(5.15e-02, 0.078) (0.0248, 0.140) (0.170, 2.166) (0.853, 1.003)

q33
-0.073

e33
0.800

(-9.13e-02, -0.059) (0.620, 0.907)

q34
0.009

e34
0.140 1.193 0.989

(4.01e-03, 0.021) (0.090, 0.210) (0.600, 2.370) (0.954, 1.025)

q35
0.001

(4.38e-05, 0.010)

q43
0.089

e43
0.025 0.304 0.889

(7.34e-02, 0.109) (0.003, 0.200) (0.024, 3.802) (0.748, 1.057)

q44
-0.090

e44
0.975

(-1.09e-01, -0.074) (0.800, 0.997)

q45
0.0002

(1.06e-07, 0.370)

Table 13. Initial state occupancy probabilities for misclassification model with covariates

Estimate LCL UCL
State 1 0.001 0.000 0.077
State 2 0.024 0.001 0.062
State 3 0.276 0.207 0.350
State 4 0.699 0.604 0.761

Effects of gender on misclassification probability
is significant at 5% significance level. Compared
to females, for males, there is more likely to

misclassify a state given to worse state, for
example, 1→ 2 2.4 times, 2→ 3 2.1 times, 3→ 4
1.2 times. Age is not significant.
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5 CONCLUSIONS

Disease progression of HIV/AIDS is studied
for 354 patients under ART follow-up at the
Shashemene Referral hospital, Ethiopia. Five
states simple Markov and hidden Markov
models are fitted to the data. Transition
rates, misclassification probabilities, sojourn
times, conditional transition probabilities and
coefficients of covariates are estimated.

Results from the simple Markov model analysis
reveal that at the start, individuals are at highest
risk to be in severe state with probability of 0.715
and at healthy state with lowest probability of
0.006. Transition rates in the lower diagonals are
relatively higher than the upper ones indicating
that the progression of the disease is towards
the healthier states. There is more likely to be in
a better state than worse state. This is a good
news that ART based patient care has positive
impacts on the overall progression of HIV/AIDS
disease. Among the transient states, the mean
waiting time for the healthiest state is significantly
high, while that of the worser states are found to
be equal. Moreover, the total length of time stay
in a state declines with severity of the disease.

The conditional probability of staying in the
given state decreases with increasing time and
relatively high when patients are in the healthy
state. The conditional probability of transition
in to the next worst state increases and reach
optimum points at 34 months from state 1,
11 months from state 2 and 12 months from
state 3 and declines then after. The conditional
probability of transition in to the next better state
also increases and reach optimum points at
points about 0.4 and then declines. The turning
points so interesting for be studied.

Results from the miscalssification model analysis
reveal that, referring to the true states, a patient
is initially at highest risk to be severely sick
with probability of 0.69 and at lower risk to
be in the better health stages. The estimated
values of the transition rates of the true states
is relatively smaller compared to those from the
simple model.

A patient in states 1 and 4 are well classified
indicating that there is high probability to be

stay in those states. State 2 is misclassified
to state 1 with probability 0.196 but to state 3
with probability 0.144. Sate 3 is misclassified to
state 2 with probability 0.074 and to state 4 with
probability 0.126. The highest misclassification
is found to be from state 2 to state 1. The mean
times spent in states under the misclassificaton
model are respectively higher compared to the
estimates found with the simple model.

The conditional probabilities under the
misclassificaton model behave similar to those
under the simple model for both transitions in to
the next better state and in to the next worst state.
However, the conditional probabilitiy of moving
to healthiest state from the next worst state
grows higher dramatically. And those conditional
probabilities of moving to next worst state grows
slightly lower. Male patients are more likely to
move to worse state than the females do. Effect
of age is found to be almost insignificant in this
study.

We may conclude from this study that
progression of the underlying states of the
HIV/AIDS disease behave similar to that
of the generated markers or observations
except the turning points of the conditional
probabilities. These findings can be used by
health professionals to provide more efficient
patient cares.
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