Differential Rotation of the Chromosphere in the He I Absorption Line

Li, K. J. and Xu, J. C. and Xie, J. L. and Feng, W. (2020) Differential Rotation of the Chromosphere in the He I Absorption Line. The Astrophysical Journal Letters, 905 (1). L11. ISSN 2041-8205

[thumbnail of Li_2020_ApJL_905_L11.pdf] Text
Li_2020_ApJL_905_L11.pdf - Published Version

Download (1MB)

Abstract

Differential rotation is the basis of the solar dynamo theory. Synoptic maps of He I intensity from Carrington rotations 2032–2135 are utilized to investigate the differential rotation of the solar chromosphere in the He I absorption line. The chromosphere is surprisingly found to rotate faster than the photosphere below it. The anomalous heating of the chromosphere and corona has been a big problem in modern astronomy. It is speculated that the small-scale magnetic elements with magnetic flux in the range of (2.9–32.0) × 1018 Mx, which are anchored in the leptocline, heat the quiet chromosphere to present the anomalous temperature increase, causing it to rotate at the same rate as the leptocline. The differential of rotation rate in the chromosphere is found to be strengthened by strong magnetic fields, but in stark contrast, at the photosphere strong magnetic fields repress the differential of rotation rate. A plausible explanation is given for these findings.

Item Type: Article
Subjects: Open Archive Press > Physics and Astronomy
Depositing User: Unnamed user with email support@openarchivepress.com
Date Deposited: 17 May 2023 05:20
Last Modified: 04 Jun 2024 11:06
URI: http://library.2pressrelease.co.in/id/eprint/1254

Actions (login required)

View Item
View Item