Mapping Recombination Rate on the Autosomal Chromosomes Based on the Persistency of Linkage Disequilibrium Phase Among Autochthonous Beef Cattle Populations in Spain

Mouresan, Elena Flavia and González-Rodríguez, Aldemar and Cañas-Álvarez, Jhon Jacobo and Munilla, Sebastián and Altarriba, Juan and Díaz, Clara and Baró, Jesús A. and Molina, Antonio and Lopez-Buesa, Pascual and Piedrafita, Jesús and Varona, Luis (2019) Mapping Recombination Rate on the Autosomal Chromosomes Based on the Persistency of Linkage Disequilibrium Phase Among Autochthonous Beef Cattle Populations in Spain. Frontiers in Genetics, 10. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/2/package-entries/fgene-10-01170.pdf] Text
pubmed-zip/versions/2/package-entries/fgene-10-01170.pdf - Published Version

Download (3MB)

Abstract

In organisms with sexual reproduction, genetic diversity, and genome evolution are governed by meiotic recombination caused by crossing-over, which is known to vary within the genome. In this study, we propose a simple method to estimate the recombination rate that makes use of the persistency of linkage disequilibrium (LD) phase among closely related populations. The biological material comprised 171 triplets (sire/dam/offspring) from seven populations of autochthonous beef cattle in Spain (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Pirenaica, Retinta, and Rubia Gallega), which were genotyped for 777,962 SNPs with the BovineHD BeadChip. After standard quality filtering, we reconstructed the haplotype phases in the parental individuals and calculated the LD by the correlation -r- between each pair of markers that had a genetic distance < 1 Mb. Subsequently, these correlations were used to calculate the persistency of LD phase between each pair of populations along the autosomal genome. Therefore, the distribution of the recombination rate along the genome can be inferred since the effect of the number of generations of divergence should be equivalent throughout the genome. In our study, the recombination rate was highest in the largest chromosomes and at the distal portion of the chromosomes. In addition, the persistency of LD phase was highly heterogeneous throughout the genome, with a ratio of 25.4 times between the estimates of the recombination rates from the genomic regions that had the highest (BTA18-7.1 Mb) and the lowest (BTA12-42.4 Mb) estimates. Finally, an overrepresentation enrichment analysis (ORA) showed differences in the enriched gene ontology (GO) terms between the genes located in the genomic regions with estimates of the recombination rate over (or below) the 95th (or 5th) percentile throughout the autosomal genome.

Item Type: Article
Subjects: Open Archive Press > Medical Science
Depositing User: Unnamed user with email support@openarchivepress.com
Date Deposited: 30 Jan 2023 09:41
Last Modified: 09 Jul 2024 07:04
URI: http://library.2pressrelease.co.in/id/eprint/352

Actions (login required)

View Item
View Item