Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex

Chaieb, Leila and Antal, Andrea and Masurat, Florentin and Paulus, Walter (2015) Neuroplastic effects of transcranial near-infrared stimulation (tNIRS) on the motor cortex. Frontiers in Behavioral Neuroscience, 9. ISSN 1662-5153

[thumbnail of pubmed-zip/versions/1/package-entries/fnbeh-09-00147/fnbeh-09-00147.pdf] Text
pubmed-zip/versions/1/package-entries/fnbeh-09-00147/fnbeh-09-00147.pdf - Published Version

Download (513kB)

Abstract

Near-infrared light stimulation of the brain has been claimed to improve deficits caused by traumatic brain injury and stroke. Here, we exploit the effect of transcranial near-infrared stimulation (tNIRS) as a tool to modulate cortical excitability in the healthy human brain. tNIRS was applied at a wavelength of 810 nm for 10 min over the hand area of the primary motor cortex (M1). Both single-pulse and paired-pulse measures of transcranial magnetic stimulation (TMS) were used to assess levels of cortical excitability in the corticospinal pathway and intracortical circuits. The serial reaction time task (SRTT) was used to investigate the possible effect of tNIRS on implicit learning. By evaluating the mean amplitude of single-pulse TMS elicited motor-evoked-potentials (MEPs) a significant decrease of the amplitude was observed up to 30 min post-stimulation, compared to baseline. Furthermore, the short interval cortical inhibition (SICI) was increased and facilitation (ICF) decreased significantly after tNIRS. The results from the SRTT experiment show that there was no net effect of stimulation on the performance of the participants. Results of a study questionnaire demonstrated that tNIRS did not induce serious side effects apart from light headache and fatigue. Nevertheless, 66% were able to detect the difference between active and sham stimulation conditions. In this study we provide further evidence that tNIRS is suitable as a tool for influencing cortical excitability and activity in the healthy human brain.

Item Type: Article
Subjects: Open Archive Press > Biological Science
Depositing User: Unnamed user with email support@openarchivepress.com
Date Deposited: 02 Mar 2023 07:52
Last Modified: 11 Mar 2024 05:22
URI: http://library.2pressrelease.co.in/id/eprint/605

Actions (login required)

View Item
View Item